AIMC Topic: Fatty Liver

Clear Filters Showing 21 to 30 of 102 articles

FibrAIm - The machine learning approach to identify the early stage of liver fibrosis and steatosis.

International journal of medical informatics
BACKGROUND: Early recognition of steatosis (fatty liver) and fibrosis in liver health is crucial for effectively managing and preventing the possibility of liver dysfunction. Detecting steatosis helps identify individuals at risk of liver-related dis...

Diagnostic of fatty liver using radiomics and deep learning models on non-contrast abdominal CT.

PloS one
PURPOSE: This study aims to explore the potential of non-contrast abdominal CT radiomics and deep learning models in accurately diagnosing fatty liver.

Assessment of ChatGPT-generated medical Arabic responses for patients with metabolic dysfunction-associated steatotic liver disease.

PloS one
BACKGROUND AND AIM: Artificial intelligence (AI)-powered chatbots, such as Chat Generative Pretrained Transformer (ChatGPT), have shown promising results in healthcare settings. These tools can help patients obtain real-time responses to queries, ens...

Development and validation of machine learning models for MASLD: based on multiple potential screening indicators.

Frontiers in endocrinology
BACKGROUND: Multifaceted factors play a crucial role in the prevention and treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). This study aimed to utilize multifaceted indicators to construct MASLD risk prediction machine l...

Golgi protein 73: charting new territories in diagnosing significant fibrosis in MASLD: a prospective cross-sectional study.

Frontiers in endocrinology
OBJECTIVES: To explore the correlation between serum Golgi protein 73 (GP73) levels and the degree of fibrosis in Metabolic dysfunction associated steatotic liver disease (MASLD); to establish a non-invasive diagnostic algorithm based on serum GP73 a...

HepNet: Deep Neural Network for Classification of Early-Stage Hepatic Steatosis Using Microwave Signals.

IEEE journal of biomedical and health informatics
Hepatic steatosis, a key factor in chronic liver diseases, is difficult to diagnose early. This study introduces a classifier for hepatic steatosis using microwave technology, validated through clinical trials. Our method uses microwave signals and d...

Ultrasound Versus Elastography in the Diagnosis of Hepatic Steatosis: Evaluation of Traditional Machine Learning Versus Deep Learning.

Sensors (Basel, Switzerland)
The prevalence of fatty liver disease is on the rise, posing a significant global health concern. If left untreated, it can progress into more serious liver diseases. Therefore, accurately diagnosing the condition at an early stage is essential for m...

Identification of biomarkers for the diagnosis in colorectal polyps and metabolic dysfunction-associated steatohepatitis (MASH) by bioinformatics analysis and machine learning.

Scientific reports
Colorectal polyps are precursors of colorectal cancer. Metabolic dysfunction associated steatohepatitis (MASH) is one of metabolic dysfunction associated fatty liver disease (MAFLD) phenotypic manifestations. Much evidence has suggested an associatio...

Convolutional neural network classification of ultrasound parametric images based on echo-envelope statistics for the quantitative diagnosis of liver steatosis.

Journal of medical ultrasonics (2001)
PURPOSE: Early detection and quantitative evaluation of liver steatosis are crucial. Therefore, this study investigated a method for classifying ultrasound images to fatty liver grades based on echo-envelope statistics (ES) and convolutional neural n...

Accurate non-invasive detection of MASH with fibrosis F2-F3 using a lightweight machine learning model with minimal clinical and metabolomic variables.

Metabolism: clinical and experimental
BACKGROUND: There are no known non-invasive tests (NITs) designed for accurately detecting metabolic dysfunction-associated steatohepatitis (MASH) with liver fibrosis stages F2-F3, excluding cirrhosis-the FDA-defined range for prescribing Resmetirom ...