AIMC Topic: Female

Clear Filters Showing 1931 to 1940 of 27113 articles

Compositional transformations can reasonably introduce phenotype-associated values into sparse features.

mSystems
UNLABELLED: Gihawi et al. (mBio 14:e01607-23, 2023, https://doi.org/10.1128/mbio.01607-23) argued that the analysis of tumor-associated microbiome data by Poore et al. (Nature 579:567-574, 2020, https://doi.org/10.1038/s41586-020-2095-1) is invalid b...

Testing theories of political persuasion using AI.

Proceedings of the National Academy of Sciences of the United States of America
Despite its importance to society and many decades of research, key questions about the social and psychological processes of political persuasion remain unanswered, often due to data limitations. We propose that AI tools, specifically generative lar...

Ensemble Learning-Based Alzheimer's Disease Classification Using Electroencephalogram Signals and Clock Drawing Test Images.

Sensors (Basel, Switzerland)
Ensemble learning (EL), a machine learning technique that combines the results of multiple learning algorithms to obtain predicted values, aims to achieve better predictive performance than a single learning algorithm alone. Machine learning techniqu...

GLIO-Select: Machine Learning-Based Feature Selection and Weighting of Tissue and Serum Proteomic and Metabolomic Data Uncovers Sex Differences in Glioblastoma.

International journal of molecular sciences
Glioblastoma (GBM) is a fatal brain cancer known for its rapid and aggressive growth, with some studies indicating that females may have better survival outcomes compared to males. While sex differences in GBM have been observed, the underlying biolo...

Data-driven machine learning algorithm model for pneumonia prediction and determinant factor stratification among children aged 6-23 months in Ethiopia.

BMC infectious diseases
INTRODUCTION: Pneumonia is the leading cause of child morbidity and mortality and accounts for 5.6 million under-five child deaths. Pneumonia has a significant impact on the quality of life, the country's economy, and the survival of children. Theref...

Detecting the left atrial appendage in CT localizers using deep learning.

Scientific reports
Patients with cardioembolic stroke often undergo CT of the left atrial appendage (LAA), for example, to determine whether thrombi are present in the LAA. To guide the imaging process, technologists first perform a localizer scan, which is a prelimina...

Comparison between logistic regression and machine learning algorithms on prediction of noise-induced hearing loss and investigation of SNP loci.

Scientific reports
To compare the comprehensive performance of conventional logistic regression (LR) and seven machine learning (ML) algorithms in Noise-Induced Hearing Loss (NIHL) prediction, and to investigate the single nucleotide polymorphism (SNP) loci significant...

Association Between Risk Factors and Major Cancers: Explainable Machine Learning Approach.

JMIR cancer
BACKGROUND: Cancer is a life-threatening disease and a leading cause of death worldwide, with an estimated 611,000 deaths and over 2 million new cases in the United States in 2024. The rising incidence of major cancers, including among younger indivi...

A depression detection approach leveraging transfer learning with single-channel EEG.

Journal of neural engineering
Major depressive disorder (MDD) is a widespread mental disorder that affects health. Many methods combining electroencephalography (EEG) with machine learning or deep learning have been proposed to objectively distinguish between MDD and healthy indi...

Visualizing functional network connectivity differences using an explainable machine-learning method.

Physiological measurement
. Functional network connectivity (FNC) estimated from resting-state functional magnetic resonance imaging showed great information about the neural mechanism in different brain disorders. But previous research has mainly focused on standard statisti...