AIMC Topic: Genome, Plant

Clear Filters Showing 61 to 70 of 74 articles

RiceSNP-BST: a deep learning framework for predicting biotic stress-associated SNPs in rice.

Briefings in bioinformatics
Rice consistently faces significant threats from biotic stresses, such as fungi, bacteria, pests, and viruses. Consequently, accurately and rapidly identifying previously unknown single-nucleotide polymorphisms (SNPs) in the rice genome is a critical...

PTFSpot: deep co-learning on transcription factors and their binding regions attains impeccable universality in plants.

Briefings in bioinformatics
Unlike animals, variability in transcription factors (TFs) and their binding regions (TFBRs) across the plants species is a major problem that most of the existing TFBR finding software fail to tackle, rendering them hardly of any use. This limitatio...

SoyDNGP: a web-accessible deep learning framework for genomic prediction in soybean breeding.

Briefings in bioinformatics
Soybean is a globally significant crop, playing a vital role in human nutrition and agriculture. Its complex genetic structure and wide trait variation, however, pose challenges for breeders and researchers aiming to optimize its yield and quality. A...

miWords: transformer-based composite deep learning for highly accurate discovery of pre-miRNA regions across plant genomes.

Briefings in bioinformatics
Discovering pre-microRNAs (miRNAs) is the core of miRNA discovery. Using traditional sequence/structural features, many tools have been published to discover miRNAs. However, in practical applications like genomic annotations, their actual performanc...

Inpactor2: a software based on deep learning to identify and classify LTR-retrotransposons in plant genomes.

Briefings in bioinformatics
LTR-retrotransposons are the most abundant repeat sequences in plant genomes and play an important role in evolution and biodiversity. Their characterization is of great importance to understand their dynamics. However, the identification and classif...

Meta-i6mA: an interspecies predictor for identifying DNA N6-methyladenine sites of plant genomes by exploiting informative features in an integrative machine-learning framework.

Briefings in bioinformatics
DNA N6-methyladenine (6mA) represents important epigenetic modifications, which are responsible for various cellular processes. The accurate identification of 6mA sites is one of the challenging tasks in genome analysis, which leads to an understandi...

Prediction of Rice Transcription Start Sites Using TransPrise: A Novel Machine Learning Approach.

Methods in molecular biology (Clifton, N.J.)
As the interest in genetic resequencing increases, so does the need for effective mathematical, computational, and statistical approaches. One of the difficult problems in genome annotation is determination of precise positions of transcription start...

Revisiting CRISPR/Cas-mediated crop improvement: Special focus on nutrition.

Journal of biosciences
Genome editing (GE) technology has emerged as a multifaceted strategy that instantaneously popularised the mechanism to modify the genetic constitution of an organism. The clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-a...

Computational aspects underlying genome to phenome analysis in plants.

The Plant journal : for cell and molecular biology
Recent advances in genomics technologies have greatly accelerated the progress in both fundamental plant science and applied breeding research. Concurrently, high-throughput plant phenotyping is becoming widely adopted in the plant community, promisi...

Applications of Machine Learning Methods to Genomic Selection in Breeding Wheat for Rust Resistance.

The plant genome
New methods and algorithms are being developed for predicting untested phenotypes in schemes commonly used in genomic selection (GS). The prediction of disease resistance in GS has its own peculiarities: a) there is consensus about the additive natur...