AIMC Topic: Gray Matter

Clear Filters Showing 41 to 50 of 109 articles

A combination of support vector machine and voxel-based morphometry in adult male alcohol use disorder patients with cognitive deficits.

Brain research
Cognitive performance deteriorates with drinking. However, the neural basis of cognitive deficits in alcohol use disorder (AUD) is still incompletely understood. Here we examined the relationship between overall drinking, brain structural alterations...

Multiparametric mapping in the brain from conventional contrast-weighted images using deep learning.

Magnetic resonance in medicine
PURPOSE: To develop a deep-learning-based method to quantify multiple parameters in the brain from conventional contrast-weighted images.

Deep grey matter quantitative susceptibility mapping from small spatial coverages using deep learning.

Zeitschrift fur medizinische Physik
INTRODUCTION: Quantitative Susceptibility Mapping (QSM) is generally acquired with full brain coverage, even though many QSM brain-iron studies focus on the deep grey matter (DGM) region only. Reducing the spatial coverage to the DGM vicinity can sub...

Maturity of gray matter structures and white matter connectomes, and their relationship with psychiatric symptoms in youth.

Human brain mapping
Brain predicted age difference, or BrainPAD, compares chronological age to an age estimate derived by applying machine learning (ML) to MRI brain data. BrainPAD studies in youth have been relatively limited, often using only a single MRI modality or ...

Whole-brain functional MRI registration based on a semi-supervised deep learning model.

Medical physics
PURPOSE: Traditional registration of functional magnetic resonance images (fMRI) is typically achieved through registering their coregistered structural MRI. However, it cannot achieve accurate performance in that functional units which are not neces...

Sparse deep neural networks on imaging genetics for schizophrenia case-control classification.

Human brain mapping
Deep learning methods hold strong promise for identifying biomarkers for clinical application. However, current approaches for psychiatric classification or prediction do not allow direct interpretation of original features. In the present study, we ...

Temporal Lobe Epilepsy Surgical Outcomes Can Be Inferred Based on Structural Connectome Hubs: A Machine Learning Study.

Annals of neurology
OBJECTIVE: Medial temporal lobe epilepsy (TLE) is the most common form of medication-resistant focal epilepsy in adults. Despite removal of medial temporal structures, more than one-third of patients continue to have disabling seizures postoperativel...

Using diffusion tensor imaging to detect cortical changes in fronto-temporal dementia subtypes.

Scientific reports
Fronto-temporal dementia (FTD) is a common type of presenile dementia, characterized by a heterogeneous clinical presentation that includes three main subtypes: behavioural-variant FTD, non-fluent/agrammatic variant primary progressive aphasia and se...

Predicting individual improvement in schizophrenia symptom severity at 1-year follow-up: Comparison of connectomic, structural, and clinical predictors.

Human brain mapping
In a machine learning setting, this study aims to compare the prognostic utility of connectomic, brain structural, and clinical/demographic predictors of individual change in symptom severity in individuals with schizophrenia. Symptom severity at bas...