Cell-penetrating peptides have important therapeutic applications in drug delivery, but the variety of known cell-penetrating peptides is still limited. With a promise to accelerate peptide development, artificial intelligence (AI) techniques includi...
Advancements in volume electron microscopy mean it is now possible to generate thousands of serial images at nanometre resolution overnight, yet the gold standard approach for data analysis remains manual segmentation by an expert microscopist, resul...
The size and shape of peptide ions in the gas phase are an under-explored dimension for mass spectrometry-based proteomics. To investigate the nature and utility of the peptide collisional cross section (CCS) space, we measure more than a million dat...
Recent studies have shown that RNA methylation modification can affect RNA transcription, metabolism, splicing and stability. In addition, RNA methylation modification has been associated with cancer, obesity and other diseases. Based on information ...
Modern experimental technologies can assay large numbers of biological sequences, but engineered protein libraries rarely exceed the sequence diversity of natural protein families. Machine learning (ML) models trained directly on experimental data wi...
Retrotransposons can cause somatic genome variation in the human nervous system, which is hypothesized to have relevance to brain development and neuropsychiatric disease. However, the detection of individual somatic mobile element insertions present...
We proposed an ensemble convolutional neural network model to identify sgRNA high on-target activity in four crops and we used one-hot encoding and k-mers for sequence encoding. As an important component of the CRISPR/Cas9 system, single-guide RNA (s...
The accurate segmentation and tracking of cells in microscopy image sequences is an important task in biomedical research, e.g., for studying the development of tissues, organs or entire organisms. However, the segmentation of touching cells in image...
We propose an unsupervised deep learning network to analyze the dynamics of membrane proteins from the fluorescence intensity traces. This system was trained inĀ an unsupervised manner with the raw experimental time traces and synthesized ones, so nei...
Segmenting cell nuclei within microscopy images is a ubiquitous task in biological research and clinical applications. Unfortunately, segmenting low-contrast overlapping objects that may be tightly packed is a major bottleneck in standard deep learni...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.