AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Hypoglycemic Agents

Showing 1 to 10 of 127 articles

Clear Filters

The effect of renal function on the clinical outcomes and management of patients hospitalized with hyperglycemic crises.

Frontiers in endocrinology
BACKGROUND: The global prevalence of diabetes has been rising rapidly in recent years, leading to an increase in patients experiencing hyperglycemic crises like diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS). Patients with imp...

Real-Time AI-Assisted Insulin Titration System for Glucose Control in Patients With Type 2 Diabetes: A Randomized Clinical Trial.

JAMA network open
IMPORTANCE: Type 2 diabetes (T2D) is one of the most prevalent chronic diseases in the world. Insulin titration for glycemic control in T2D is crucial but limited by the lack of personalized and real-time tools.

Predictors of glycaemic improvement in children and young adults with type 1 diabetes and very elevated HbA1c using the MiniMed 780G system.

Diabetes, obesity & metabolism
AIMS: This study aimed to identify key factors with the greatest influence on glycaemic outcomes in young individuals with type 1 diabetes (T1D) and very elevated glycaemia after 3 months of automated insulin delivery (AID).

Developing an AI-Based clinical decision support system for basal insulin titration in type 2 diabetes in primary Care: A Mixed-Methods evaluation using heuristic Analysis, user Feedback, and eye tracking.

International journal of medical informatics
BACKGROUND AND AIM: The progressive nature of type 2 diabetes often, in time, necessitates basal insulin therapy to achieve glycemic targets. However, despite standardized titration algorithms, many people remain poorly controlled after initiating in...

Machine learning applications to classify and monitor medication adherence in patients with type 2 diabetes in Ethiopia.

Frontiers in endocrinology
BACKGROUND: Medication adherence plays a crucial role in determining the health outcomes of patients, particularly those with chronic conditions like type 2 diabetes. Despite its significance, there is limited evidence regarding the use of machine le...

A safe-enhanced fully closed-loop artificial pancreas controller based on deep reinforcement learning.

PloS one
Patients with type 1 diabetes and their physicians have long desired a fully closed-loop artificial pancreas (AP) system that can alleviate the burden of blood glucose regulation. Although deep reinforcement learning (DRL) methods theoretically enabl...

AntiT2DMP-Pred: Leveraging feature fusion and optimization for superior machine learning prediction of type 2 diabetes mellitus.

Methods (San Diego, Calif.)
Pancreatic α-amylase breaks down starch into isomaltose and maltose, which are further hydrolyzed by α-glucosidase in the intestine into monosaccharides, rapidly raising blood sugar levels and contributing to type 2 diabetes mellitus (T2DM). Syntheti...

SERPINA3: A Novel Therapeutic Target for Diabetes-Related Cognitive Impairment Identified Through Integrated Machine Learning and Molecular Docking Analysis.

International journal of molecular sciences
Diabetes-related cognitive impairment (DCI) is a severe complication of type 2 diabetes mellitus (T2DM), with limited understanding of its molecular mechanisms hindering effective therapeutic development. This study identified SERPINA3 as a potential...

Non-Linear Dose-Response Relationship for Metformin in Japanese Patients With Type 2 Diabetes: Analysis of Irregular Longitudinal Data by Interpretable Machine Learning Models.

Pharmacology research & perspectives
The dose-response relationship between metformin and change in hemoglobin A1c (HbA1c) shows a maximum at 1500-2000 mg/day in patients with type 2 diabetes (T2D) in the U.S. In Japan, there is little evidence on the HbA1c-lowering effect of high-dose ...

Deep reinforcement learning for Type 1 Diabetes: Dual PPO controller for personalized insulin management.

Computers in biology and medicine
BACKGROUND: Managing blood glucose levels in Type 1 Diabetes Mellitus (T1DM) is essential to prevent complications. Traditional insulin delivery methods often require significant patient involvement, limiting automation. Reinforcement Learning (RL)-b...