Computational and mathematical methods in medicine
Jan 20, 2021
Deep learning has shown potential in significantly improving performance for undersampled magnetic resonance (MR) image reconstruction. However, one challenge for the application of deep learning to clinical scenarios is the requirement of large, hig...
Diagnosis of HIV-associated neurocognitive impairment (NCI) continues to be a clinical challenge. The purpose of this study was to develop a prediction model for NCI among people with HIV using clinical- and magnetic resonance imaging (MRI)-derived f...
European journal of cancer (Oxford, England : 1990)
Jan 16, 2021
BACKGROUND: Studies systematically unravelling possible causes for false diagnoses of deep learning convolutional neural networks (CNNs) are scarce, yet needed before broader application.
The tongue image provides important physical information of humans. It is of great importance for diagnoses and treatments in clinical medicine. Herbal prescriptions are simple, noninvasive, and have low side effects. Thus, they are widely applied in...
Computational and mathematical methods in medicine
Jan 15, 2021
Optical coherence tomography (OCT) is a noninvasive cross-sectional imaging technology used to examine the retinal structure and pathology of the eye. Evaluating the thickness of the choroid using OCT images is of great interests for clinicians and r...
The purpose of this study was to introduce a new deep learning (DL) model for segmentation of the fovea avascular zone (FAZ) in en face optical coherence tomography angiography (OCTA) and compare the results with those of the device's built-in softwa...
BACKGROUND: Dystrophinopathies are the most common type of inherited muscular diseases. Muscle biopsy and genetic tests are effective to diagnose the disease but cost much more than primary hospitals can reach. The more available muscle MRI is promis...
European journal of cancer (Oxford, England : 1990)
Jan 7, 2021
BACKGROUND: A basic requirement for artificial intelligence (AI)-based image analysis systems, which are to be integrated into clinical practice, is a high robustness. Minor changes in how those images are acquired, for example, during routine skin c...
BACKGROUND: Deep neural networks (DNNs) are widely investigated in medical image classification to achieve automated support for clinical diagnosis. It is necessary to evaluate the robustness of medical DNN tasks against adversarial attacks, as high-...
BACKGROUND: With the development of deep learning (DL), more and more methods based on deep learning are proposed and achieve state-of-the-art performance in biomedical image segmentation. However, these methods are usually complex and require the su...