AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Image Interpretation, Computer-Assisted

Showing 351 to 360 of 2623 articles

Clear Filters

Multi-scale multimodal deep learning framework for Alzheimer's disease diagnosis.

Computers in biology and medicine
Multimodal neuroimaging data, including magnetic resonance imaging (MRI) and positron emission tomography (PET), provides complementary information about the brain that can aid in Alzheimer's disease (AD) diagnosis. However, most existing deep learni...

Self-supervised learning on dual-sequence magnetic resonance imaging for automatic segmentation of nasopharyngeal carcinoma.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Automating the segmentation of nasopharyngeal carcinoma (NPC) is crucial for therapeutic procedures but presents challenges given the hurdles in amassing extensively annotated datasets. Although previous studies have applied self-supervised learning ...

Automatic discrimination between neuroendocrine carcinomas and grade 3 neuroendocrine tumors by deep learning of H&E images.

Computers in biology and medicine
Neuroendocrine neoplasms (NENs) arise from diffuse neuroendocrine cells and are categorized as either well-differentiated and less proliferative Neuroendocrine Tumors (NETs), divided into low (G1), middle (G2), and high grades (G3), or poorly differe...

Enhanced MobileNet for skin cancer image classification with fused spatial channel attention mechanism.

Scientific reports
Skin Cancer, which leads to a large number of deaths annually, has been extensively considered as the most lethal tumor around the world. Accurate detection of skin cancer in its early stage can significantly raise the survival rate of patients and r...

Computer-aided diagnosis of early-stage Retinopathy of Prematurity in neonatal fundus images using artificial intelligence.

Biomedical physics & engineering express
Retinopathy of Prematurity (ROP) is a retinal disorder affecting preterm babies, which can lead to permanent blindness without treatment. Early-stage ROP diagnosis is vital in providing optimal therapy for the neonates. The proposed study predicts ea...

Minimally interactive segmentation of soft-tissue tumors on CT and MRI using deep learning.

European radiology
BACKGROUND: Segmentations are crucial in medical imaging for morphological, volumetric, and radiomics biomarkers. Manual segmentation is accurate but not feasible in clinical workflow, while automatic segmentation generally performs sub-par.

Deep learning reconstruction for accelerated high-resolution upper abdominal MRI improves lesion detection without time penalty.

Diagnostic and interventional imaging
PURPOSE: The purpose of this study was to compare a conventional T1-weighted volumetric interpolated breath-hold examination (VIBE) sequence with a DL-reconstructed accelerated high-resolution VIBE sequence (HR-VIBE) in terms of image quality, lesion...

Multiclass classification of Alzheimer's disease prodromal stages using sequential feature embeddings and regularized multikernel support vector machine.

NeuroImage
The detection of patients in the cognitive normal (CN), mild cognitive impairment (MCI), and Alzheimer's disease (AD) stages of neurodegeneration is crucial for early treatment interventions. However, the heterogeneity of MCI data samples poses a cha...

A Parkinson's disease-related nuclei segmentation network based on CNN-Transformer interleaved encoder with feature fusion.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Automatic segmentation of Parkinson's disease (PD) related deep gray matter (DGM) nuclei based on brain magnetic resonance imaging (MRI) is significant in assisting the diagnosis of PD. However, due to the degenerative-induced changes in appearance, ...