AIMC Topic: Image Interpretation, Computer-Assisted

Clear Filters Showing 51 to 60 of 2810 articles

Deep learning based automated left atrial segmentation and flow quantification of real time phase contrast MRI in patients with atrial fibrillation.

The international journal of cardiovascular imaging
Real time 2D phase contrast (RTPC) MRI is useful for flow quantification in atrial fibrillation (AF) patients, but data analysis requires time-consuming anatomical contouring for many cardiac time frames. Our goal was to develop a convolutional neura...

Brain tumor detection empowered with ensemble deep learning approaches from MRI scan images.

Scientific reports
Brain tumor detection is essential for early diagnosis and successful treatment, both of which can significantly enhance patient outcomes. To evaluate brain MRI scans and categorize them into four types-pituitary, meningioma, glioma, and normal-this ...

Deep learning for quality assessment of axial T2-weighted prostate MRI: a tool to reduce unnecessary rescanning.

European radiology experimental
BACKGROUND: T2-weighted images are a critical component of prostate magnetic resonance imaging (MRI), and it would be useful to automatically assess image quality (IQ) on a patient-specific basis without radiologist oversight.

Enhanced glaucoma classification through advanced segmentation by integrating cup-to-disc ratio and neuro-retinal rim features.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Glaucoma is a progressive eye condition caused by high intraocular fluid pressure, damaging the optic nerve, leading to gradual, irreversible vision loss, often without noticeable symptoms. Subtle signs like mild eye redness, slightly blurred vision,...

Structural uncertainty estimation for medical image segmentation.

Medical image analysis
Precise segmentation and uncertainty estimation are crucial for error identification and correction in medical diagnostic assistance. Existing methods mainly rely on pixel-wise uncertainty estimations. They (1) neglect the global context, leading to ...

A Deep Learning Approach for Nerve Injury Classification in Brachial Plexopathies Using Magnetic Resonance Neurography with Modified Hiking Optimization Algorithm.

Academic radiology
RATIONALE AND OBJECTIVES: Brachial plexopathies (BPs) encompass a complex spectrum of nerve injuries affecting motor and sensory function in the upper extremities. Diagnosis is challenging due to the intricate anatomy and symptom overlap with other n...

A novel diagnosis method utilizing MDBO-SVM and imaging genetics for Alzheimer's disease.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Alzheimer's disease (AD) is the most common neurodegenerative disorder, yet its underlying mechanisms remain elusive. Early and accurate diagnosis is crucial for timely intervention and disease management. In this paper, a multi-strategy improved dun...

Medical image translation with deep learning: Advances, datasets and perspectives.

Medical image analysis
Traditional medical image generation often lacks patient-specific clinical information, limiting its clinical utility despite enhancing downstream task performance. In contrast, medical image translation precisely converts images from one modality to...

General retinal image enhancement via reconstruction: Bridging distribution shifts using latent diffusion adaptors.

Medical image analysis
Deep learning-based fundus image enhancement has attracted extensive research attention recently, which has shown remarkable effectiveness in improving the visibility of low-quality images. However, these methods are often constrained to specific dat...