AIMC Topic: Image Processing, Computer-Assisted

Clear Filters Showing 621 to 630 of 9585 articles

Deep learning-based video-level view classification of two-dimensional transthoracic echocardiography.

Biomedical physics & engineering express
In recent years, deep learning (DL)-based automatic view classification of 2D transthoracic echocardiography (TTE) has demonstrated strong performance, but has not fully addressed key clinical requirements such as view coverage, classification accura...

TGF-Net: Transformer and gist CNN fusion network for multi-modal remote sensing image classification.

PloS one
In the field of earth sciences and remote exploration, the classification and identification of surface materials on earth have been a significant research area that poses considerable challenges in recent times. Although deep learning technology has...

IRMA: Machine learning-based harmonization of F-FDG PET brain scans in multi-center studies.

European journal of nuclear medicine and molecular imaging
PURPOSE: Center-specific effects in PET brain scans arise due to differences in technical and procedural aspects. This restricts the merging of data between centers and introduces source-specific bias.

Deep learning-based time-of-flight (ToF) enhancement of non-ToF PET scans for different radiotracers.

European journal of nuclear medicine and molecular imaging
AIM: To evaluate a deep learning-based time-of-flight (DLToF) model trained to enhance the image quality of non-ToF PET images for different tracers, reconstructed using BSREM algorithm, towards ToF images.

Automated quantification of brain PET in PET/CT using deep learning-based CT-to-MR translation: a feasibility study.

European journal of nuclear medicine and molecular imaging
PURPOSE: Quantitative analysis of PET images in brain PET/CT relies on MRI-derived regions of interest (ROIs). However, the pairs of PET/CT and MR images are not always available, and their alignment is challenging if their acquisition times differ c...

Interpretation of basal nuclei in brain dopamine transporter scans using a deep convolutional neural network.

Nuclear medicine communications
OBJECTIVE: Functional imaging using the dopamine transporter (DAT) as a biomarker has proven effective in assessing dopaminergic neuron degeneration in the striatum. In assessing the neuron degeneration, visual and semiquantitative methods are used t...

Exploring the potential performance of 0.2 T low-field unshielded MRI scanner using deep learning techniques.

Magma (New York, N.Y.)
OBJECTIVE: Using deep learning-based techniques to overcome physical limitations and explore the potential performance of 0.2 T low-field unshielded MRI in terms of imaging quality and speed.

A deep learning detection method for pancreatic cystic neoplasm based on Mamba architecture.

Journal of X-ray science and technology
OBJECTIVE: Early diagnosis of pancreatic cystic neoplasm (PCN) is crucial for patient survival. This study proposes M-YOLO, a novel model combining Mamba architecture and YOLO, to enhance the detection of pancreatic cystic tumors. The model addresses...

The development of an artificial intelligence auto-segmentation tool for 3D volumetric analysis of vestibular schwannomas.

Scientific reports
Linear and volumetric analysis are the typical methods to measure tumor size. 3D volumetric analysis has risen in popularity; however, this is very time and labor intensive limiting its implementation in clinical practice. This study aims to show tha...

HDL-ACO hybrid deep learning and ant colony optimization for ocular optical coherence tomography image classification.

Scientific reports
Optical Coherence Tomography (OCT) plays a crucial role in diagnosing ocular diseases, yet conventional CNN-based models face limitations such as high computational overhead, noise sensitivity, and data imbalance. This paper introduces HDL-ACO, a nov...