IMPORTANCE: Treatment for intracranial pressure (ICP) has been increasingly informed by machine learning (ML)-derived ICP waveform characteristics. There are gaps, however, in understanding how ICP monitor type may bias waveform characteristics used ...
Federated learning (FL) has emerged as a significant method for developing machine learning models across multiple devices without centralized data collection. Candidemia, a critical but rare disease in ICUs, poses challenges in early detection and t...
Antimicrobial resistance and infection control
Jul 6, 2024
BACKGROUND: Multidrug-resistant organisms (MDRO) pose a significant threat to public health. Intensive Care Units (ICU), characterized by the extensive use of antimicrobial agents and a high prevalence of bacterial resistance, are hotspots for MDRO p...
BACKGROUND AND AIM: Acute pancreatitis (AP) is potentially fatal. Therefore, early identification of patients at a high mortality risk and timely intervention are essential. This study aimed to establish an explainable machine-learning model for pred...
PURPOSE: This study aims to develop and validate a prediction model for delirium in elderly ICU patients and help clinicians identify high-risk patients at the early stage.
This study aimed to develop a machine learning (ML)-based tool for early and accurate prediction of in-hospital mortality risk in patients with spontaneous intracerebral hemorrhage (sICH) in the intensive care unit (ICU). We did a retrospective study...
BACKGROUND: Cerebral vasospasm (CV) is a feared complication which occurs after 20-40% of subarachnoid haemorrhage (SAH). It is standard practice to admit patients with SAH to intensive care for an extended period of resource-intensive monitoring. We...
BACKGROUND: There is no individualized prediction model for intensive care unit (ICU) admission on patients with community-acquired pneumonia (CAP) and connective tissue disease (CTD) so far. In this study, we aimed to establish a machine learning-ba...
The rapid advancements in Artificial Intelligence of Things (AIoT) are pivotal for the healthcare sector, especially as the world approaches an aging society which will be reached by 2050. This paper presents an innovative AIoT-enabled data fusion sy...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.