AIMC Topic: Intensive Care Units

Clear Filters Showing 191 to 200 of 694 articles

Deriving Automated Device Metadata From Intracranial Pressure Waveforms: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury ICU Physiology Cohort Analysis.

Critical care explorations
IMPORTANCE: Treatment for intracranial pressure (ICP) has been increasingly informed by machine learning (ML)-derived ICP waveform characteristics. There are gaps, however, in understanding how ICP monitor type may bias waveform characteristics used ...

A privacy-preserving platform oriented medical healthcare and its application in identifying patients with candidemia.

Scientific reports
Federated learning (FL) has emerged as a significant method for developing machine learning models across multiple devices without centralized data collection. Candidemia, a critical but rare disease in ICUs, poses challenges in early detection and t...

Development and validation of machine learning models to predict MDRO colonization or infection on ICU admission by using electronic health record data.

Antimicrobial resistance and infection control
BACKGROUND: Multidrug-resistant organisms (MDRO) pose a significant threat to public health. Intensive Care Units (ICU), characterized by the extensive use of antimicrobial agents and a high prevalence of bacterial resistance, are hotspots for MDRO p...

Prediction of in-hospital Mortality of Intensive Care Unit Patients with Acute Pancreatitis Based on an Explainable Machine Learning Algorithm.

Journal of clinical gastroenterology
BACKGROUND AND AIM: Acute pancreatitis (AP) is potentially fatal. Therefore, early identification of patients at a high mortality risk and timely intervention are essential. This study aimed to establish an explainable machine-learning model for pred...

Machine learning for the prediction of delirium in elderly intensive care unit patients.

European geriatric medicine
PURPOSE: This study aims to develop and validate a prediction model for delirium in elderly ICU patients and help clinicians identify high-risk patients at the early stage.

Machine learning for the prediction of in-hospital mortality in patients with spontaneous intracerebral hemorrhage in intensive care unit.

Scientific reports
This study aimed to develop a machine learning (ML)-based tool for early and accurate prediction of in-hospital mortality risk in patients with spontaneous intracerebral hemorrhage (sICH) in the intensive care unit (ICU). We did a retrospective study...

Machine learning predicts cerebral vasospasm in patients with subarachnoid haemorrhage.

EBioMedicine
BACKGROUND: Cerebral vasospasm (CV) is a feared complication which occurs after 20-40% of subarachnoid haemorrhage (SAH). It is standard practice to admit patients with SAH to intensive care for an extended period of resource-intensive monitoring. We...

An explainable machine learning-based model to predict intensive care unit admission among patients with community-acquired pneumonia and connective tissue disease.

Respiratory research
BACKGROUND: There is no individualized prediction model for intensive care unit (ICU) admission on patients with community-acquired pneumonia (CAP) and connective tissue disease (CTD) so far. In this study, we aimed to establish a machine learning-ba...

Design and Implementation of an Intensive Care Unit Command Center for Medical Data Fusion.

Sensors (Basel, Switzerland)
The rapid advancements in Artificial Intelligence of Things (AIoT) are pivotal for the healthcare sector, especially as the world approaches an aging society which will be reached by 2050. This paper presents an innovative AIoT-enabled data fusion sy...

Sepsis mortality prediction with Machine Learning Tecniques.

Medicina intensiva
OBJECTIVE: To develop a sepsis death classification model based on machine learning techniques for patients admitted to the Intensive Care Unit (ICU).