AIMC Topic: Ki-67 Antigen

Clear Filters Showing 11 to 20 of 58 articles

Ki-67 evaluation using deep-learning model-assisted digital image analysis in breast cancer.

Histopathology
AIMS: To test the efficacy of artificial intelligence (AI)-assisted Ki-67 digital image analysis in invasive breast carcinoma (IBC) with quantitative assessment of AI model performance.

Ultrasound-based artificial intelligence model for prediction of Ki-67 proliferation index in soft tissue tumors.

Academic radiology
RATIONALE AND OBJECTIVES: To investigate the value of deep learning (DL) combined with radiomics and clinical and imaging features in predicting the Ki-67 proliferation index of soft tissue tumors (STTs).

The application value of support vector machine model based on multimodal MRI in predicting IDH-1mutation and Ki-67 expression in glioma.

BMC medical imaging
PURPOSE: To investigate the application value of support vector machine (SVM) model based on diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) and amide proton transfer- weighted (APTW) imaging in predicting isocitrate dehydrogenase 1...

Radiomics Analysis of Intratumoral and Various Peritumoral Regions From Automated Breast Volume Scanning for Accurate Ki-67 Prediction in Breast Cancer Using Machine Learning.

Academic radiology
RATIONALE AND OBJECTIVES: Current radiomics research primarily focuses on intratumoral regions and fixed peritumoral areas, lacking optimization for accurate Ki-67 prediction. This study aimed to develop machine learning (ML) models to analyze radiom...

Revolutionizing breast cancer Ki-67 diagnosis: ultrasound radiomics and fully connected neural networks (FCNN) combination method.

Breast cancer research and treatment
PURPOSE: This study aims to assess the diagnostic value of ultrasound habitat sub-region radiomics feature parameters using a fully connected neural networks (FCNN) combination method L2,1-norm in relation to breast cancer Ki-67 status.

Machine-Learning and Radiomics-Based Preoperative Prediction of Ki-67 Expression in Glioma Using MRI Data.

Academic radiology
BACKGROUND: Gliomas are the most common primary brain tumours and constitute approximately half of all malignant glioblastomas. Unfortunately, patients diagnosed with malignant glioblastomas typically survive for less than a year. In light of this ci...

Automated AI-based grading of neuroendocrine tumors using Ki-67 proliferation index: comparative evaluation and performance analysis.

Medical & biological engineering & computing
Early detection is critical for successfully diagnosing cancer, and timely analysis of diagnostic tests is increasingly important. In the context of neuroendocrine tumors, the Ki-67 proliferation index serves as a fundamental biomarker, aiding pathol...

A deep learning based holistic diagnosis system for immunohistochemistry interpretation and molecular subtyping.

Neoplasia (New York, N.Y.)
BACKGROUND: Breast cancer in different molecular subtypes, which is determined by the overexpression rates of human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), progesterone receptor (PR), and Ki67, exhibit distinct symptom char...