AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Ki-67 Antigen

Showing 11 to 20 of 55 articles

Clear Filters

Artificial intelligence-powered optimization of KI-67 assessment in breast cancer: enhancing precision and workflow efficiency. a literature review.

JPMA. The Journal of the Pakistan Medical Association
Breast Cancer (BC) has evolved from traditional morphological analysis to molecular profiling, identifying new subtypes. Ki-67, a prognostic biomarker, helps classify subtypes and guide chemotherapy decisions. This review explores how artificial inte...

Construction and validation of artificial intelligence pathomics models for predicting pathological staging in colorectal cancer: Using multimodal data and clinical variables.

Cancer medicine
OBJECTIVE: This retrospective observational study aims to develop and validate artificial intelligence (AI) pathomics models based on pathological Hematoxylin-Eosin (HE) slides and pathological immunohistochemistry (Ki67) slides for predicting the pa...

Revolutionizing breast cancer Ki-67 diagnosis: ultrasound radiomics and fully connected neural networks (FCNN) combination method.

Breast cancer research and treatment
PURPOSE: This study aims to assess the diagnostic value of ultrasound habitat sub-region radiomics feature parameters using a fully connected neural networks (FCNN) combination method L2,1-norm in relation to breast cancer Ki-67 status.

The application value of support vector machine model based on multimodal MRI in predicting IDH-1mutation and Ki-67 expression in glioma.

BMC medical imaging
PURPOSE: To investigate the application value of support vector machine (SVM) model based on diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) and amide proton transfer- weighted (APTW) imaging in predicting isocitrate dehydrogenase 1...

Radiomics Analysis of Intratumoral and Various Peritumoral Regions From Automated Breast Volume Scanning for Accurate Ki-67 Prediction in Breast Cancer Using Machine Learning.

Academic radiology
RATIONALE AND OBJECTIVES: Current radiomics research primarily focuses on intratumoral regions and fixed peritumoral areas, lacking optimization for accurate Ki-67 prediction. This study aimed to develop machine learning (ML) models to analyze radiom...

Ultrasound-based artificial intelligence model for prediction of Ki-67 proliferation index in soft tissue tumors.

Academic radiology
RATIONALE AND OBJECTIVES: To investigate the value of deep learning (DL) combined with radiomics and clinical and imaging features in predicting the Ki-67 proliferation index of soft tissue tumors (STTs).