AIMC Topic: Lipidomics

Clear Filters Showing 21 to 30 of 35 articles

Machine learning approach reveals microbiome, metabolome, and lipidome profiles in type 1 diabetes.

Journal of advanced research
INTRODUCTION: Type 1 diabetes (T1D) is a complex disorder influenced by genetic and environmental factors. The gut microbiome, the serum metabolome, and the serum lipidome have been identified as key environmental factors contributing to the pathophy...

Uncovering the complex genetic architecture of human plasma lipidome using machine learning methods.

Scientific reports
Genetic architecture of plasma lipidome provides insights into regulation of lipid metabolism and related diseases. We applied an unsupervised machine learning method, PGMRA, to discover phenotype-genotype many-to-many relations between genotype and ...

Advances in mass spectrometry imaging for spatial cancer metabolomics.

Mass spectrometry reviews
Mass spectrometry (MS) has become a central technique in cancer research. The ability to analyze various types of biomolecules in complex biological matrices makes it well suited for understanding biochemical alterations associated with disease progr...

Candidate Circulating Biomarkers of Spontaneous Miscarriage After IVF-ET Identified via Coupling Machine Learning and Serum Lipidomics Profiling.

Reproductive sciences (Thousand Oaks, Calif.)
Spontaneous miscarriage is a common pregnancy complication. Multiple etiologies have been proposed such as genetic aberrations, endocrinology disorder, and immunologic derangement; however, the relevance of circulating lipidomes to the specific condi...

Coupling Machine Learning and Lipidomics as a Tool to Investigate Metabolic Dysfunction-Associated Fatty Liver Disease. A General Overview.

Biomolecules
Hepatic biopsy is the gold standard for staging nonalcoholic fatty liver disease (NAFLD). Unfortunately, accessing the liver is invasive, requires a multidisciplinary team and is too expensive to be conducted on large segments of the population. NAFL...

Systems biology in cardiovascular disease: a multiomics approach.

Nature reviews. Cardiology
Omics techniques generate large, multidimensional data that are amenable to analysis by new informatics approaches alongside conventional statistical methods. Systems theories, including network analysis and machine learning, are well placed for anal...

A random forest based biomarker discovery and power analysis framework for diagnostics research.

BMC medical genomics
BACKGROUND: Biomarker identification is one of the major and important goal of functional genomics and translational medicine studies. Large scale -omics data are increasingly being accumulated and can provide vital means for the identification of bi...

An Approach to Biomarker Discovery of Cannabis Use Utilizing Proteomic, Metabolomic, and Lipidomic Analyses.

Cannabis and cannabinoid research
Relatively little is known about the molecular pathways influenced by cannabis use in humans. We used a multi-omics approach to examine protein, metabolomic, and lipid markers in plasma differentiating between cannabis users and nonusers to understa...

Improving lipid mapping in Genome Scale Metabolic Networks using ontologies.

Metabolomics : Official journal of the Metabolomic Society
INTRODUCTION: To interpret metabolomic and lipidomic profiles, it is necessary to identify the metabolic reactions that connect the measured molecules. This can be achieved by putting them in the context of genome-scale metabolic network reconstructi...

Lipidome-based rapid diagnosis with machine learning for detection of TGF-β signalling activated area in head and neck cancer.

British journal of cancer
BACKGROUND: Several pro-oncogenic signals, including transforming growth factor beta (TGF-β) signalling from tumour microenvironment, generate intratumoural phenotypic heterogeneity and result in tumour progression and treatment failure. However, the...