AIMC Topic: Lung Diseases

Clear Filters Showing 1 to 10 of 155 articles

Intelligent diagnosis model for chest X-ray images diseases based on convolutional neural network.

BMC medical imaging
To address misdiagnosis caused by feature coupling in multi-label medical image classification, this study introduces a chest X-ray pathology reasoning method. It combines hierarchical attention convolutional networks with a multi-label decoupling lo...

Enhancing Pulmonary Disease Prediction Using Large Language Models With Feature Summarization and Hybrid Retrieval-Augmented Generation: Multicenter Methodological Study Based on Radiology Report.

Journal of medical Internet research
BACKGROUND: The rapid advancements in natural language processing, particularly the development of large language models (LLMs), have opened new avenues for managing complex clinical text data. However, the inherent complexity and specificity of medi...

Oxidative Stress Markers and Prediction of Severity With a Machine Learning Approach in Hospitalized Patients With COVID-19 and Severe Lung Disease: Observational, Retrospective, Single-Center Feasibility Study.

JMIR formative research
BACKGROUND: Serious pulmonary pathologies of infectious, viral, or bacterial origin are accompanied by inflammation and an increase in oxidative stress (OS). In these situations, biological measurements of OS are technically difficult to obtain, and ...

Feature Separation in Diffuse Lung Disease Image Classification by Using Evolutionary Algorithm-Based NAS.

IEEE journal of biomedical and health informatics
In the field of diagnosing lung diseases, the application of neural networks (NNs) in image classification exhibits significant potential. However, NNs are considered "black boxes," making it difficult to discern their decision-making processes, ther...

Classification of pulmonary diseases from chest radiographs using deep transfer learning.

PloS one
Pulmonary diseases are the leading causes of disabilities and deaths worldwide. Early diagnosis of pulmonary diseases can reduce the fatality rate. Chest radiographs are commonly used to diagnose pulmonary diseases. In clinical practice, diagnosing p...

Multi-axis transformer based U-Net with class balanced ensemble model for lung disease classification using X-ray images.

Journal of X-ray science and technology
Chest X-rays are an essential diagnostic tool for identifying chest disorders because of its high sensitivity in detecting pathological anomalies in the lungs. Classification models based on conventional Convolutional Neural Networks (CNNs) are adve...

[Artificial intelligence and machine learning in auscultation: prospects of the project DigitaLung].

Pneumologie (Stuttgart, Germany)
Auscultation is one of the key medical skills in physical examination. The main problem with auscultation is the lack of objectivity of the findings and great dependence on the experience of the examiner. Auscultation using machine learning and neura...

An 8-point scale lung ultrasound scoring network fusing local detail and global features.

Scientific reports
Manual lung ultrasound (LUS) scoring is influenced by clinicians' subjective interpretation, leading to potential inconsistencies and misdiagnoses due to varying levels of experience. To improve monitoring of pulmonary ventilation and support early d...

DKCN-Net: Deep kronecker convolutional neural network-based lung disease detection with federated learning.

Computational biology and chemistry
In the healthcare field, lung disease detection techniques based on deep learning (DL) are widely used. However, achieving high stability while maintaining privacy remains a challenge. To address this, this research employs Federated Learning (FL), e...

[Artificial intelligence in paediatric pneumology - opportunities and unanswered questions].

Klinische Padiatrie
Artificial intelligence (AI) is already being used in most medical disciplines, including paediatric pneumology. This review describes current developments in AI-supported technologies and discusses their potential for the diagnosis and treatment of ...