AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Metagenomics

Showing 61 to 70 of 111 articles

Clear Filters

Artificial intelligence and metagenomics in intestinal diseases.

Journal of gastroenterology and hepatology
Gut microbiota has been shown to associate with the development of gastrointestinal diseases. In the last decade, development in whole metagenome sequencing and 16S rRNA sequencing technology has dramatically accelerated the gut microbiome's research...

Combining natural language processing and metabarcoding to reveal pathogen-environment associations.

PLoS neglected tropical diseases
Cryptococcus neoformans is responsible for life-threatening infections that primarily affect immunocompromised individuals and has an estimated worldwide burden of 220,000 new cases each year-with 180,000 resulting deaths-mostly in sub-Saharan Africa...

Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox.

Genome biology
The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific software is scarce, and overoptimistic evaluation and limited cross-study generalization are prevailing i...

Explainable AI reveals changes in skin microbiome composition linked to phenotypic differences.

Scientific reports
Alterations in the human microbiome have been observed in a variety of conditions such as asthma, gingivitis, dermatitis and cancer, and much remains to be learned about the links between the microbiome and human health. The fusion of artificial inte...

MegaR: an interactive R package for rapid sample classification and phenotype prediction using metagenome profiles and machine learning.

BMC bioinformatics
BACKGROUND: Diverse microbiome communities drive biogeochemical processes and evolution of animals in their ecosystems. Many microbiome projects have demonstrated the power of using metagenomics to understand the structures and factors influencing th...

Unraveling city-specific signature and identifying sample origin locations for the data from CAMDA MetaSUB challenge.

Biology direct
BACKGROUND: Composition of microbial communities can be location-specific, and the different abundance of taxon within location could help us to unravel city-specific signature and predict the sample origin locations accurately. In this study, the wh...

NGS read classification using AI.

PloS one
Clinical metagenomics is a powerful diagnostic tool, as it offers an open view into all DNA in a patient's sample. This allows the detection of pathogens that would slip through the cracks of classical specific assays. However, due to this unspecific...

Metagenomic Sequencing Analysis for Acne Using Machine Learning Methods Adapted to Single or Multiple Data.

Computational and mathematical methods in medicine
The human health status can be assessed by the means of research and analysis of the human microbiome. Acne is a common skin disease whose morbidity increases year by year. The lipids which influence acne to a large extent are studied by metagenomic ...

Deep learning in next-generation sequencing.

Drug discovery today
Next-generation sequencing (NGS) methods lie at the heart of large parts of biological and medical research. Their fundamental importance has created a continuously increasing demand for processing and analysis methods of the data sets produced, addr...

Deep learning for HGT insertion sites recognition.

BMC genomics
BACKGROUND: Horizontal Gene Transfer (HGT) refers to the sharing of genetic materials between distant species that are not in a parent-offspring relationship. The HGT insertion sites are important to understand the HGT mechanisms. Recent studies in m...