AIMC Topic: Middle Aged

Clear Filters Showing 2231 to 2240 of 14424 articles

Improving the prediction of patient survival with the aid of residual convolutional neural network (ResNet) in colorectal cancer with unresectable liver metastases treated with bevacizumab-based chemotherapy.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: To verify overall survival predictions made with residual convolutional neural network-determined morphological response (ResNet-MR) in patients with unresectable synchronous liver-only metastatic colorectal cancer (mCRC) treated with bev...

Exploring machine learning algorithms to predict not using modern family planning methods among reproductive age women in East Africa.

BMC health services research
BACKGROUND: The use of the modern family planning method provides chances for women to reach optimal child spacing, increase quality of life, increase economic status, achieve the desired family size, and prevent unsafe abortions and maternal and per...

Reduced-dose deep learning iterative reconstruction for abdominal computed tomography with low tube voltage and tube current.

BMC medical informatics and decision making
BACKGROUND: The low tube-voltage technique (e.g., 80 kV) can efficiently reduce the radiation dose and increase the contrast enhancement of vascular and parenchymal structures in abdominal CT. However, a high tube current is always required in this s...

Combined inflammation-related biomarkers and clinicopathological features for the prognosis of stage II/III colorectal cancer by machine learning.

BMC cancer
BACKGROUND: Inflammation-related biomarkers, such as systemic inflammation score (SIS) and neutrophil-lymphocyte ratio (NLR), are associated with colorectal cancer prognosis. However, the combined role of SIS, NLR, and clinicopathological factors in ...

Clinical characteristics and prediction model of re-positive nucleic acid tests among Omicron infections by machine learning: a real-world study of 35,488 cases.

BMC infectious diseases
BACKGROUND: During the Omicron BA.2 variant outbreak in Shanghai, China, from April to May 2022, PCR nucleic acid test re-positivity (TR) occurred frequently, yet the risk factors and predictive models for TR remain unclear. This study aims to identi...

Unravelling intubation challenges: a machine learning approach incorporating multiple predictive parameters.

BMC anesthesiology
BACKGROUND: To protect patients during anesthesia, difficult airway management is a serious issue that needs to be carefully planned for and carried out. Machine learning prediction tools have recently become increasingly common in medicine, frequent...

Using machine learning and natural language processing in triage for prediction of clinical disposition in the emergency department.

BMC emergency medicine
BACKGROUND: Accurate triage is required for efficient allocation of resources and to decrease patients' length of stay. Triage decisions are often subjective and vary by provider, leading to patients being over-triaged or under-triaged. This study de...

An explainable analysis of diabetes mellitus using statistical and artificial intelligence techniques.

BMC medical informatics and decision making
BACKGROUND: Diabetes mellitus (DM) is a chronic disease prevalent worldwide, requiring a multifaceted analytical approach to improve early detection and subsequent mitigation of morbidity and mortality rates. This research aimed to develop an explain...