AIMC Topic: Models, Genetic

Clear Filters Showing 81 to 90 of 345 articles

Systematic characterization of mutations altering protein degradation in human cancers.

Molecular cell
The ubiquitin-proteasome system (UPS) is the primary route for selective protein degradation in human cells. The UPS is an attractive target for novel cancer therapies, but the precise UPS genes and substrates important for cancer growth are incomple...

A machine learning method based on the genetic and world competitive contests algorithms for selecting genes or features in biological applications.

Scientific reports
Gene/feature selection is an essential preprocessing step for creating models using machine learning techniques. It also plays a critical role in different biological applications such as the identification of biomarkers. Although many feature/gene s...

ES-ARCNN: Predicting enhancer strength by using data augmentation and residual convolutional neural network.

Analytical biochemistry
Enhancers are non-coding DNA sequences bound by proteins called transcription factors. They function as distant regulators of gene transcription and participate in the development and maintenance of cell types and tissues. Since experimental validati...

Machine Learning Analysis of Longevity-Associated Gene Expression Landscapes in Mammals.

International journal of molecular sciences
One of the important questions in aging research is how differences in transcriptomics are associated with the longevity of various species. Unfortunately, at the level of individual genes, the links between expression in different organs and maximum...

Detecting operons in bacterial genomes via visual representation learning.

Scientific reports
Contiguous genes in prokaryotes are often arranged into operons. Detecting operons plays a critical role in inferring gene functionality and regulatory networks. Human experts annotate operons by visually inspecting gene neighborhoods across pileups ...

An Elite Gene Guided Reproduction Operator for Many-Objective Optimization.

IEEE transactions on cybernetics
Traditional reproduction operators in many-objective evolutionary algorithms (MaOEAs) seem to not be so effective to tackle many-objective optimization problems (MaOPs). This is mainly because the population size cannot be set to an arbitrarily large...

A review of deep learning applications for genomic selection.

BMC genomics
BACKGROUND: Several conventional genomic Bayesian (or no Bayesian) prediction methods have been proposed including the standard additive genetic effect model for which the variance components are estimated with mixed model equations. In recent years,...

pcPromoter-CNN: A CNN-Based Prediction and Classification of Promoters.

Genes
A promoter is a small region within the DNA structure that has an important role in initiating transcription of a specific gene in the genome. Different types of promoters are recognized by their different functions. Due to the importance of promoter...

Predicting potential residues associated with lung cancer using deep neural network.

Mutation research
Lung cancer is a prominent type of cancer, which leads to high mortality rate worldwide. The major lung cancers lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC) occur mainly due to somatic driver mutations in proteins and screening of su...

Predicting MicroRNA Sequence Using CNN and LSTM Stacked in Seq2Seq Architecture.

IEEE/ACM transactions on computational biology and bioinformatics
CNN and LSTM have proven their ability in feature extraction and natural language processing, respectively. So, we tried to use their ability to process the language of RNAs, i.e., predicting sequence of microRNAs using the sequence of mRNA. The idea...