AIMC Topic: Models, Statistical

Clear Filters Showing 51 to 60 of 1269 articles

Predicting macular hole surgery outcomes: Integrating preoperative OCT features with supervised machine learning statistical models.

Indian journal of ophthalmology
PURPOSE: To evaluate various supervised machine learning (ML) statistical models to predict anatomical outcomes after macular hole (MH) surgery using preoperative optical coherence tomography (OCT) features.

Area under the ROC Curve has the most consistent evaluation for binary classification.

PloS one
The proper use of model evaluation metrics is important for model evaluation and model selection in binary classification tasks. This study investigates how consistent different metrics are at evaluating models across data of different prevalence whi...

DDP-DAR: Network intrusion detection based on denoising diffusion probabilistic model and dual-attention residual network.

Neural networks : the official journal of the International Neural Network Society
Network intrusion detection (NID) is an effective manner to guarantee the security of cyberspace. However, the scale of normal network traffic is much larger than intrusion traffic (i.e., appearing data imbalance problem), which leads to the training...

Spatiotemporal modeling of long-term PM concentrations and population exposure in Greece, using machine learning and statistical methods.

The Science of the total environment
The lack of high-resolution, long-term PM observations in Greece and the Eastern Mediterranean hampers the development of spatial models that are crucial for providing representative exposure estimates to health studies. This work presents a spatial ...

An explainable analysis of diabetes mellitus using statistical and artificial intelligence techniques.

BMC medical informatics and decision making
BACKGROUND: Diabetes mellitus (DM) is a chronic disease prevalent worldwide, requiring a multifaceted analytical approach to improve early detection and subsequent mitigation of morbidity and mortality rates. This research aimed to develop an explain...

TransformerLSR: Attentive joint model of longitudinal data, survival, and recurrent events with concurrent latent structure.

Artificial intelligence in medicine
In applications such as biomedical studies, epidemiology, and social sciences, recurrent events often co-occur with longitudinal measurements and a terminal event, such as death. Therefore, jointly modeling longitudinal measurements, recurrent events...

A supervised machine learning statistical design of experiment approach to modeling the barriers to effective snakebite treatment in Ghana.

PLoS neglected tropical diseases
BACKGROUND: Snakebite envenoming is a serious condition that affects 2.5 million people and causes 81,000-138,000 deaths every year, particularly in tropical and subtropical regions. The World Health Organization has set a goal to halve the deaths an...

Model-informed approach to estimate treatment effect in placebo-controlled clinical trials using an artificial intelligence-based propensity weighting methodology to account for non-specific responses to treatment.

Journal of pharmacokinetics and pharmacodynamics
In randomized, placebo controlled clinical trials (RCT) in major depressive disorders (MDD), treatment response (TR) is estimated by the change from baseline at study-end (EOS) of the scores of clinical scales used for assessing disease severity. Tre...

Frequency-adjusted borders ordinal forest: A novel tree ensemble method for ordinal prediction.

The British journal of mathematical and statistical psychology
Ordinal responses commonly occur in psychology, e.g., through school grades or rating scales. Where traditionally parametric statistical models like the proportional odds model have been used, machine learning (ML) methods such as random forest (RF) ...