AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Molecular Dynamics Simulation

Showing 61 to 70 of 492 articles

Clear Filters

Unveiling key drivers of hepatocellular carcinoma: a synergistic approach with network pharmacology, machine learning-driven ligand discovery and dynamic simulations.

SAR and QSAR in environmental research
Hepatocellular carcinoma (HCC) ranks fourth in cancer-related mortality worldwide. This study aims to uncover the genes and pathways involved in HCC through network pharmacology (NP) and to discover potential drugs via machine learning (ML)-based lig...

Machine learning-enabled virtual screening indicates the anti-tuberculosis activity of aldoxorubicin and quarfloxin with verification by molecular docking, molecular dynamics simulations, and biological evaluations.

Briefings in bioinformatics
Drug resistance in Mycobacterium tuberculosis (Mtb) is a significant challenge in the control and treatment of tuberculosis, making efforts to combat the spread of this global health burden more difficult. To accelerate anti-tuberculosis drug discove...

In silico design of dehydrophenylalanine containing peptide activators of glucokinase using pharmacophore modelling, molecular dynamics and machine learning: implications in type 2 diabetes.

Journal of computer-aided molecular design
Diabetes represents a significant global health challenge associated with substantial healthcare costs and therapeutic complexities. Current diabetes therapies often entail adverse effects, necessitating the exploration of novel agents. Glucokinase (...

Endocrine disruptor identification and multitoxicity level assessment of organic chemicals: An example of multiple machine learning models.

Journal of hazardous materials
Endocrine-disrupting chemicals (EDCs) pollution is a major global environmental issue. Assessing the multiple toxic effects of EDCs is key to managing their risks. This study successfully developed an EDCs classification and recognition model based o...

BioStructNet: Structure-Based Network with Transfer Learning for Predicting Biocatalyst Functions.

Journal of chemical theory and computation
Enzyme-substrate interactions are essential to both biological processes and industrial applications. Advanced machine learning techniques have significantly accelerated biocatalysis research, revolutionizing the prediction of biocatalytic activities...

Advanced Mass-Spectra-Based Machine Learning for Predicting the Toxicity of Traditional Chinese Medicines.

Analytical chemistry
Traditional Chinese medicine (TCM) has been a cornerstone of health care for centuries, valued for its preventive and therapeutic properties. However, recent decades have revealed significant toxicological concerns associated with TCMs due to their c...

Enhanced prediction of beta-secretase inhibitory compounds with mol2vec technique and machine learning algorithms.

SAR and QSAR in environmental research
A comprehensive computational strategy that combined QSAR modelling, molecular docking, and ADMET analysis was used to discover potential inhibitors for β-secretase 1 (BACE-1). A dataset of 1,138 compounds with established BACE-1 inhibitory activitie...

Flow Matching for Optimal Reaction Coordinates of Biomolecular Systems.

Journal of chemical theory and computation
We present flow matching for reaction coordinates (FMRC), a novel deep learning algorithm designed to identify optimal reaction coordinates (RC) in biomolecular reversible dynamics. FMRC is based on the mathematical principles of lumpability and deco...

Grand canonical Monte Carlo and deep learning assisted enhanced sampling to characterize the distribution of Mg2+ and influence of the Drude polarizable force field on the stability of folded states of the twister ribozyme.

The Journal of chemical physics
Molecular dynamics simulations are crucial for understanding the structural and dynamical behavior of biomolecular systems, including the impact of their environment. However, there is a gap between the time scale of these simulations and that of rea...

On the emergence of machine-learning methods in bottom-up coarse-graining.

Current opinion in structural biology
Machine-learning methods have gained significant attention in the computational chemistry community as a viable approach to molecular modeling and analysis. Recent successes in utilizing neural networks to learn atomistic force-fields which 'coarse-g...