International journal of computer assisted radiology and surgery
Sep 26, 2019
PURPOSE: The World Health Organization (WHO) grading system of pancreatic neuroendocrine tumor (PNET) plays an important role in the clinical decision. The rarity of PNET often negatively affects the radiological application of deep learning algorith...
INTRODUCTION: The pathological grading of pancreatic neuroendocrine neoplasms (pNENs) is an independent predictor of survival and indicator for treatment. Deep learning (DL) with a convolutional neural network (CNN) may improve the preoperative predi...
IEEE transactions on bio-medical engineering
Feb 22, 2019
OBJECTIVE: Nucleus recognition is a critical yet challenging step in histopathology image analysis, for example, in Ki67 immunohistochemistry stained images. Although many automated methods have been proposed, most use a multi-stage processing pipeli...
The World Health Organization (WHO) has clear guidelines regarding the use of Ki67 index in defining the proliferative rate and assigning grade for pancreatic neuroendocrine tumor (NET). WHO mandates the quantification of Ki67 index by counting at le...
Efficient and robust cell detection serves as a critical prerequisite for many subsequent biomedical image analysis methods and computer-aided diagnosis (CAD). It remains a challenging task due to touching cells, inhomogeneous background noise, and l...
BACKGROUND: Small pancreatic neuroendocrine tumors (PNETs) are a unique subset of pancreatic neoplasms. Chromogranin A (CgA) levels, mitotic rate, and histologic differentiation are often used to characterize PNET behavior. This study evaluates the i...
Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
Nov 18, 2015
Robust and accurate nuclei localization in microscopy image can provide crucial clues for accurate computer-aid diagnosis. In this paper, we propose a convolutional neural network (CNN) based hough voting method to localize nucleus centroids with hea...
Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
Nov 18, 2015
Efficient and effective cell segmentation of neuroendocrine tumor (NET) in whole slide scanned images is a difficult task due to a large number of cells. The weak or misleading cell boundaries also present significant challenges. In this paper, we pr...
Deep learning models are increasingly being implemented for automated medical image analysis to inform patient care. Most models, however, lack uncertainty information, without which the reliability of model outputs cannot be ensured. Several uncerta...
BACKGROUND: Accurate diagnosis of neuroendocrine neoplasms (NENs) is challenging, especially in poorly differentiated neuroendocrine carcinomas (NECs). This study was aimed to search the best or best combination of neuroendocrine markers in the diagn...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.