European journal of cancer (Oxford, England : 1990)
Mar 1, 2021
BACKGROUND: Studies systematically unravelling possible causes for false diagnoses of deep learning convolutional neural networks (CNNs) are scarce, yet needed before broader application.
European journal of cancer (Oxford, England : 1990)
Mar 1, 2021
BACKGROUND: A basic requirement for artificial intelligence (AI)-based image analysis systems, which are to be integrated into clinical practice, is a high robustness. Minor changes in how those images are acquired, for example, during routine skin c...
BACKGROUND: Timely recognition of malignant melanoma (MM) is challenging for dermatologists worldwide and represents the main determinant for mortality. Dermoscopic examination is influenced by dermatologists' experience and fails to achieve adequate...
In this research, we present a semi-supervised segmentation solution using convolutional autoencoders to solve the problem of segmentation tasks having a small number of ground-truth images. We evaluate the proposed deep network architecture for the ...
PURPOSE: Distinguishing benign nevi from malignant melanoma using current histopathological criteria may be very challenging and is one the most difficult areas in dermatopathology. The goal of this study was to identify proteomic differences, which ...
European journal of cancer (Oxford, England : 1990)
Sep 1, 2019
BACKGROUND: Recently, convolutional neural networks (CNNs) systematically outperformed dermatologists in distinguishing dermoscopic melanoma and nevi images. However, such a binary classification does not reflect the clinical reality of skin cancer s...
European journal of cancer (Oxford, England : 1990)
Sep 1, 2019
BACKGROUND: Melanoma is the most dangerous type of skin cancer but is curable if detected early. Recent publications demonstrated that artificial intelligence is capable in classifying images of benign nevi and melanoma with dermatologist-level preci...
European journal of cancer (Oxford, England : 1990)
Sep 1, 2019
BACKGROUND: The diagnosis of most cancers is made by a board-certified pathologist based on a tissue biopsy under the microscope. Recent research reveals a high discordance between individual pathologists. For melanoma, the literature reports on 25-2...
European journal of cancer (Oxford, England : 1990)
Jul 1, 2019
BACKGROUND: The diagnosis of most cancers is made by a board-certified pathologist based on a tissue biopsy under the microscope. Recent research reveals a high discordance between individual pathologists. For melanoma, the literature reports 25-26% ...