AIMC Topic: Particulate Matter

Clear Filters Showing 71 to 80 of 196 articles

Prediction of pollutant emission characteristics in ISO50001 energy management in the Americas: Uni and multivariate machine learning approach.

The Science of the total environment
The American continent is experiencing significant economic and industrial development driven by sustainability principles. In this context, discussions on improving energy consumption have become increasingly frequent and dynamic across various sect...

Quantifying the multiple environmental, health, and economic co-benefits from the adoption of carbon capture technology in the power sector in southern Iraq, using a recurrent neural network-based health assessment approach.

Journal of environmental management
This study introduces a novel integrated quantitative modeling framework to assess the multiple environmental, health, and economic benefits from implementing carbon capture technology in the power sector of Basra province, Iraq. This province is str...

Factors of acute respiratory infection among under-five children across sub-Saharan African countries using machine learning approaches.

Scientific reports
Symptoms of Acute Respiratory infections (ARIs) among under-five children are a global health challenge. We aimed to train and evaluate ten machine learning (ML) classification approaches in predicting symptoms of ARIs reported by mothers among child...

Quantifying the pollution changes and meteorological dependence of airborne trace elements coupling source apportionment and machine learning.

The Science of the total environment
Airborne trace elements (TEs) present in atmospheric fine particulate matter (PM) exert notable threats to human health and ecosystems. To explore the impact of meteorological conditions on shaping the pollution characteristics of TEs and the associa...

Exposure Pathways of Ambient Magnetite Nanoparticles Revealed by Machine Learning-Aided Single-Particle Mass Spectrometry.

Nano letters
Nanosized ultrafine particles (UFPs) from natural and anthropogenic sources are widespread and pose serious health risks when inhaled by humans. However, tracing the inhaled UFPs is extremely difficult, and the distribution, translocation, and metab...

Prediction of developmental toxic effects of fine particulate matter (PM) water-soluble components via machine learning through observation of PM from diverse urban areas.

The Science of the total environment
The global health implications of fine particulate matter (PM) underscore the imperative need for research into its toxicity and chemical composition. In this study, zebrafish embryos exposed to the water-soluble components of PM from two cities (Har...

Predicting PM2.5 concentration with enhanced state-trend awareness and uncertainty analysis using bagging and LSTM neural networks.

Journal of environmental quality
Monitoring air pollutants, particularly PM2.5, which refers to fine particulate matter with a diameter of 2.5 µm or smaller, has become a focal point of environmental protection efforts worldwide. This study introduces the concept of state-trend awar...

IoT-based monitoring system and air quality prediction using machine learning for a healthy environment in Cameroon.

Environmental monitoring and assessment
This paper is aimed at developing an air quality monitoring system using machine learning (ML), Internet of Things (IoT), and other elements to predict the level of particulate matter and gases in the air based on the air quality index (AQI). It is a...

Urban environmental monitoring and health risk assessment introducing a fuzzy intelligent computing model.

Frontiers in public health
INTRODUCTION: To enhance the precision of evaluating the impact of urban environments on resident health, this study introduces a novel fuzzy intelligent computing model designed to address health risk concerns using multi-media environmental monitor...

Local spatiotemporal dynamics of particulate matter and oak pollen measured by machine learning aided optical particle counters.

The Science of the total environment
Conventional techniques for monitoring pollen currently have significant limitations in terms of labour, cost and the spatiotemporal resolution that can be achieved. Pollen monitoring networks across the world are generally sparse and are not able to...