AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Pelvic Neoplasms

Showing 1 to 10 of 14 articles

Clear Filters

A convolutional neural network-based system to classify patients using FDG PET/CT examinations.

BMC cancer
BACKGROUND: As the number of PET/CT scanners increases and FDG PET/CT becomes a common imaging modality for oncology, the demands for automated detection systems on artificial intelligence (AI) to prevent human oversight and misdiagnosis are rapidly ...

Robot-assisted tumorectomy for an unusual pelvic retroperitoneal leiomyoma: A case report.

Medicine
RATIONALE: Extrauterine leiomyoma occasionally occurs in rare locations with unusual growth patterns, especially pelvic retroperitoneal leiomyoma, which brings great challenges for surgeons to make a diagnosis. It is essential to distinguish benign f...

Development of a deep learning method for improving diagnostic accuracy for uterine sarcoma cases.

Scientific reports
Uterine sarcomas have very poor prognoses and are sometimes difficult to distinguish from uterine leiomyomas on preoperative examinations. Herein, we investigated whether deep neural network (DNN) models can improve the accuracy of preoperative MRI-b...

Deep learning-based classification of organs at risk and delineation guideline in pelvic cancer radiation therapy.

Journal of applied clinical medical physics
Deep learning (DL) models for radiation therapy (RT) image segmentation require accurately annotated training data. Multiple organ delineation guidelines exist; however, information on the used guideline is not provided with the delineation. Extracti...

Efficient application of deep learning-based elective lymph node regions delineation for pelvic malignancies.

Medical physics
BACKGROUND: While there are established international consensuses on the delineation of pelvic lymph node regions (LNRs), significant inter- and intra-observer variabilities persist. Contouring these clinical target volumes for irradiation in pelvic ...

Under-representation for Female Pelvis Cancers in Commercial Auto-segmentation Solutions and Open-source Imaging Datasets.

Clinical oncology (Royal College of Radiologists (Great Britain))
AIM: Artificial intelligence (AI) based auto-segmentation aids radiation therapy (RT) workflows and is being adopted in clinical environments facilitated by the increased availability of commercial solutions for organs at risk (OARs). In addition, op...

Synthetic CT generation from CBCT and MRI using StarGAN in the Pelvic Region.

Radiation oncology (London, England)
RATIONALE AND OBJECTIVES: This study evaluated StarGAN, a deep learning model designed to generate synthetic computed tomography (sCT) images from magnetic resonance imaging (MRI) and cone-beam computed tomography (CBCT) data using a single model. Th...

Development and evaluation of a deep learning framework for pelvic and sacral tumor segmentation from multi-sequence MRI: a retrospective study.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Accurate segmentation of pelvic and sacral tumors (PSTs) in multi-sequence magnetic resonance imaging (MRI) is essential for effective treatment and surgical planning.