AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Percutaneous Coronary Intervention

Showing 1 to 10 of 105 articles

Clear Filters

A brief history and clinical use of robotic procedures in the cardiovascular system.

Kardiologia polska
Robotic-assisted percutaneous coronary intervention (r-PCI) exemplifies the advancement of interventional cardiology by integrating robotics to improve procedural control, operator safety, and potentially patient outcomes. This is a brief history of ...

Machine Learning in Intravascular Ultrasound: Validating Automated Lesion Assessment for Complex Coronary Interventions.

Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions
BACKGROUND: Intravascular ultrasound (IVUS) is essential for assessing complex coronary lesions, but remains underutilized in part due to difficulties in image interpretation. The AVVIGO IVUS Automated Lesion Assessment (ALA) software, which uses mac...

Systemic coagulation-inflammation index in the prediction of ISR in patients undergoing drug-eluting stents implant: A retrospective study based on multiple machine learning methods.

International journal of cardiology
BACKGROUND: The Systemic Coagulation-Inflammation index (SCI) is an innovative hematological metric that accurately reflects both coagulopathic and inflammatory dynamics. In this paper, the objective of this paper is to explain the prognostic impact ...

Joint fusion of EHR and ECG data using attention-based CNN and ViT for predicting adverse clinical endpoints in percutaneous coronary intervention patients.

Computers in biology and medicine
Predicting post-Percutaneous Coronary Intervention (PCI) outcomes is crucial for effective patient management and quality improvement in healthcare. However, achieving accurate predictions requires the integration of multimodal clinical data, includi...

Comparison of machine learning models with conventional statistical methods for prediction of percutaneous coronary intervention outcomes: a systematic review and meta-analysis.

BMC cardiovascular disorders
INTRODUCTION: Percutaneous coronary intervention (PCI) has been the main treatment of coronary artery disease (CAD). In this review, we aimed to compare the performance of machine learning (ML) vs. logistic regression (LR) models in predicting differ...

Predicting prolonged length of in-hospital stay in patients with non-ST elevation myocardial infarction (NSTEMI) using artificial intelligence.

International journal of cardiology
BACKGROUND: Patients presenting with non-ST elevation myocardial infarction (NSTEMI) are typically evaluated using coronary angiography and managed through coronary revascularization. Numerous studies have demonstrated the benefits of expedited disch...

Machine Learning-Based Immuno-Inflammatory Index Integrating Clinical Characteristics for Predicting Coronary Artery Plaque Rupture.

Immunity, inflammation and disease
BACKGROUND: Coronary artery plaque rupture (PR) is closely associated with immune-inflammatory responses. The systemic inflammatory index (SII) and the systemic inflammatory response index (SIRI) have shown potential in predicting the occurrence of P...

Artificial Intelligence in Cardiology: General Perspectives and Focus on Interventional Cardiology.

Anatolian journal of cardiology
Artificial intelligence (AI) is being intensively applied to cardiology, particularly in diagnostics, risk prediction, treatment planning, and invasive procedures. While AI-driven advancements have demonstrated promise, their real-world implementatio...

Predicting In-Hospital Mortality in Patients With Acute Myocardial Infarction: A Comparison of Machine Learning Approaches.

Clinical cardiology
BACKGROUND: Acute myocardial infarction (AMI) remains a leading global cause of mortality. This study explores predictors of in-hospital mortality among AMI patients using advanced machine learning (ML) techniques.