Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery
39187417
Apert (AS), Crouzon (CS), Muenke (MS), Pfeiffer (PS), and Saethre Chotzen (SCS) are among the most frequently diagnosed syndromic craniosynostoses. The aims of this study were (1) to train an innovative model using artificial intelligence (AI)-based ...
Journal of plastic, reconstructive & aesthetic surgery : JPRAS
39151284
BACKGROUND: Various classification systems for tear trough deformity (TTD) have been published; however, their complexity can pose challenges in clinical use, especially for less experienced surgeons. It is believed that artificial intelligence (AI) ...
Photographic identification (photo ID) is an established method that is used to count animals and track individuals' movements. This method performs well with some species of elasmobranchs (i.e., sharks, skates, and rays) where individuals have disti...
PURPOSE: Trachoma surveys are used to estimate the prevalence of trachomatous inflammation-follicular (TF) to guide mass antibiotic distribution. These surveys currently rely on human graders, introducing a significant resource burden and potential f...
OBJECTIVE: To assess the feasibility of using non-mydriatic fundus photography in conjunction with an artificial intelligence (AI) reading platform for large-scale screening of diabetic retinopathy (DR).
OBJECTIVE: Keratitis is the primary cause of corneal blindness worldwide. Prompt identification and referral of patients with keratitis are fundamental measures to improve patient prognosis. Although deep learning can assist ophthalmologists in autom...
OBJECTIVES: Despite global research on early detection of age-related macular degeneration (AMD), not enough is being done for large-scale screening. Automated analysis of retinal images captured via smartphone presents a potential solution; however,...
PURPOSE: This study uses deep neural network-generated rim-to-disc area ratio (RADAR) measurements and the disc damage likelihood scale (DDLS) to measure the rate of optic disc rim loss in a large cohort of glaucoma patients.
BACKGROUND: To support dentists with limited experience, this study trained and compared six convolutional neural networks to detect crossbites and classify non-crossbite, frontal, and lateral crossbites using 2D intraoral photographs.