AIMC Topic:
Predictive Value of Tests

Clear Filters Showing 1551 to 1560 of 2131 articles

Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence.

Archives of toxicology
Human lungs are susceptible to the toxicity induced by soluble xenobiotics. However, the direct cellular effects of many pulmonotoxic chemicals are not always clear, and thus, a general in vitro assay for testing pulmonotoxicity applicable to a wide ...

Natural Language Processing Accurately Calculates Adenoma and Sessile Serrated Polyp Detection Rates.

Digestive diseases and sciences
BACKGROUND: ADR is a widely used colonoscopy quality indicator. Calculation of ADR is labor-intensive and cumbersome using current electronic medical databases. Natural language processing (NLP) is a method used to extract meaning from unstructured o...

MuDeRN: Multi-category classification of breast histopathological image using deep residual networks.

Artificial intelligence in medicine
MOTIVATION: Identifying carcinoma subtype can help to select appropriate treatment options and determining the subtype of benign lesions can be beneficial to estimate the patients' risk of developing cancer in the future. Pathologists' assessment of ...

Segmentation of corneal endothelium images using a U-Net-based convolutional neural network.

Artificial intelligence in medicine
Diagnostic information regarding the health status of the corneal endothelium may be obtained by analyzing the size and the shape of the endothelial cells in specular microscopy images. Prior to the analysis, the endothelial cells need to be extracte...

Coronary CT Angiography-derived Fractional Flow Reserve: Machine Learning Algorithm versus Computational Fluid Dynamics Modeling.

Radiology
Purpose To compare two technical approaches for determination of coronary computed tomography (CT) angiography-derived fractional flow reserve (FFR)-FFR derived from coronary CT angiography based on computational fluid dynamics (hereafter, FFR) and F...

Detection of Pathological Voice Using Cepstrum Vectors: A Deep Learning Approach.

Journal of voice : official journal of the Voice Foundation
OBJECTIVES: Computerized detection of voice disorders has attracted considerable academic and clinical interest in the hope of providing an effective screening method for voice diseases before endoscopic confirmation. This study proposes a deep-learn...