AIMC Topic: Predictive Value of Tests

Clear Filters Showing 381 to 390 of 2184 articles

Enhancing Outcome Prediction in Intracerebral Hemorrhage Through Deep Learning: A Retrospective Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: This study aimed to employ deep learning techniques to analyze and validate an automatic prognostic biomarker for predicting outcomes following intracerebral hemorrhage (ICH).

Development of machine learning models for fractional flow reserve prediction in angiographically intermediate coronary lesions.

Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions
BACKGROUND: Fractional flow reserve (FFR) represents the gold standard in guiding the decision to proceed or not with coronary revascularization of angiographically intermediate coronary lesion (AICL). Optical coherence tomography (OCT) allows to car...

Early predictive values of clinical assessments for ARDS mortality: a machine-learning approach.

Scientific reports
Acute respiratory distress syndrome (ARDS) is a devastating critical care syndrome with significant morbidity and mortality. The objective of this study was to evaluate the predictive values of dynamic clinical indices by developing machine-learning ...

Artificial intelligence and machine learning applications in urinary tract infections identification and prediction: a systematic review and meta-analysis.

World journal of urology
BACKGROUND: Urinary tract infections (UTIs) have been one of the most common bacterial infections in clinical practice worldwide. Artificial intelligence (AI) and machine learning (ML) based algorithms have been increasingly applied in UTI case ident...

Application Value of the Automated Machine Learning Model Based on Modified Computed Tomography Severity Index Combined With Serological Indicators in the Early Prediction of Severe Acute Pancreatitis.

Journal of clinical gastroenterology
BACKGROUND AND AIMS: Machine learning (ML) algorithms are widely applied in building models of medicine due to their powerful studying and generalizing ability. To assess the value of the Modified Computed Tomography Severity Index (MCTSI) combined w...

Prediction of bone invasion of oral squamous cell carcinoma using a magnetic resonance imaging-based machine learning model.

European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery
OBJECTIVES: Radiomics, a recently developed image-processing technology, holds potential in medical diagnostics. This study aimed to propose a machine-learning (ML) model and evaluate its effectiveness in detecting oral squamous cell carcinoma (OSCC)...

Artificial Intelligence to Predict the Risk of Lymph Node Metastasis in T2 Colorectal Cancer.

Annals of surgery
OBJECTIVE: To develop and externally validate an updated artificial intelligence (AI) prediction system for stratifying the risk of lymph node metastasis (LNM) in T2 colorectal cancer (CRC).

Predicting inferior vena cava filter complications using machine learning.

Journal of vascular surgery. Venous and lymphatic disorders
OBJECTIVE: Inferior vena cava (IVC) filter placement is associated with important long-term complications. Predictive models for filter-related complications may help guide clinical decision-making but remain limited. We developed machine learning (M...

Artificial intelligence assisted ultrasound for the non-invasive prediction of axillary lymph node metastasis in breast cancer.

BMC cancer
PURPOSE: A practical noninvasive method is needed to identify lymph node (LN) status in breast cancer patients diagnosed with a suspicious axillary lymph node (ALN) at ultrasound but a negative clinical physical examination. To predict ALN metastasis...