AIMC Topic: Prospective Studies

Clear Filters Showing 21 to 30 of 2372 articles

Prediction of early postoperative complications and transfusion risk after lumbar spinal stenosis surgery in geriatric patients: machine learning approach based on comprehensive geriatric assessment.

BMC medical informatics and decision making
BACKGROUND: Lumbar spinal stenosis is one of the most common surgery-requiring conditions of the spine in the aged population. As elderly patients often present with multiple comorbidities and limited physiological reserve, individualized risk assess...

Development and validation of machine learning-based risk prediction models for ICU-acquired weakness: a prospective cohort study.

European journal of medical research
BACKGROUND: Intensive care unit (ICU)-acquired weakness (ICUAW) is a prevalent complication in critically ill patients, marked by symmetrical respiratory and limb muscle weakness, which adversely affects long-term outcomes. Early identification of hi...

Prediction of birthweight with early and mid-pregnancy antenatal markers utilising machine learning and explainable artificial intelligence.

Scientific reports
Low birthweight (LBW) is a significant health challenge worldwide, as these neonates experience both short- and long-term disabilities. Factors affecting maternal and fetal health during early to mid-pregnancy can greatly influence fetal development....

Deep learning to identify stroke within 4.5 h using DWI and FLAIR in a prospective multicenter study.

Scientific reports
To enhance thrombolysis eligibility in acute ischemic stroke, we developed a deep learning model to estimate stroke onset within 4.5 h using diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) images. Given the variabilit...

AI-powered skin spectral imaging enables instant sepsis diagnosis and outcome prediction in critically ill patients.

Science advances
With sepsis remaining a leading cause of mortality, early identification of patients with sepsis and those at high risk of death is a challenge of high socioeconomic importance. Given the potential of hyperspectral imaging (HSI) to monitor microcircu...

Deep Learning-Based Precision Cropping of Eye Regions in Strabismus Photographs: Algorithm Development and Validation Study for Workflow Optimization.

Journal of medical Internet research
BACKGROUND: Traditional ocular gaze photograph preprocessing, relying on manual cropping and head tilt correction, is time-consuming and inconsistent, limiting artificial intelligence (AI) model development and clinical application.

Comparative study of 2D vs. 3D AI-enhanced ultrasound for fetal crown-rump length evaluation in the first trimester.

BMC pregnancy and childbirth
BACKGROUND: Accurate fetal growth evaluation is crucial for monitoring fetal health, with crown-rump length (CRL) being the gold standard for estimating gestational age and assessing growth during the first trimester. To enhance CRL evaluation accura...

Ultrafast T2-weighted MR imaging of the urinary bladder using deep learning-accelerated HASTE at 3 Tesla.

BMC medical imaging
OBJECTIVE: This prospective study aimed to assess the feasibility of a half-Fourier single-shot turbo spin echo sequence (HASTE) with deep learning (DL) reconstruction for ultrafast imaging of the bladder with reduced susceptibility to motion artifac...

Mortality and antibiotic timing in deep learning-derived surviving sepsis campaign risk groups: a multicenter study.

Critical care (London, England)
BACKGROUND: The current Surviving Sepsis Campaign (SSC) guidelines provide recommendations on timing of administering antibiotics in sepsis patients based on probability of sepsis and presence of shock. However, there have been minimal efforts to str...