AIMC Topic: Prostatic Neoplasms

Clear Filters Showing 81 to 90 of 1348 articles

Evaluation of a deep learning prostate cancer detection system on biparametric MRI against radiological reading.

European radiology
OBJECTIVES: This study aims to evaluate a deep learning pipeline for detecting clinically significant prostate cancer (csPCa), defined as Gleason Grade Group (GGG) ≥ 2, using biparametric MRI (bpMRI) and compare its performance with radiological read...

Validating knowledge-based volumetric modulated arc therapy plans with a multi-institution model (broad model) using a complete open-loop dataset for prostate cancer.

Physical and engineering sciences in medicine
This study examined the characteristics of the broad model (KBP) through a complete open-loop evaluation of volumetric modulated arc therapy (VMAT) plans for prostate cancer in 30 patients at two institutions. KBP, trained using 561 prostate cancer V...

Stimulated Raman Histology and Artificial Intelligence Provide Near Real-Time Interpretation of Radical Prostatectomy Surgical Margins.

The Journal of urology
PURPOSE: Balancing surgical margins and functional outcomes is crucial during radical prostatectomy for prostate cancer. Stimulated Raman histology (SRH) is a novel, real-time imaging technique that provides histologic images of fresh, unprocessed, a...

Stress testing deep learning models for prostate cancer detection on biopsies and surgical specimens.

The Journal of pathology
The presence, location, and extent of prostate cancer is assessed by pathologists using H&E-stained tissue slides. Machine learning approaches can accomplish these tasks for both biopsies and radical prostatectomies. Deep learning approaches using co...

Towards U-Net-based intraoperative 2D dose prediction in high dose rate prostate brachytherapy.

Brachytherapy
BACKGROUND: Poor needle placement in prostate high-dose-rate brachytherapy (HDR-BT) results in sub-optimal dosimetry and mentally predicting these effects during HDR-BT is difficult, creating a barrier to widespread availability of high-quality prost...

Digital Pathology-based Artificial Intelligence Biomarker Validation in Metastatic Prostate Cancer.

European urology oncology
BACKGROUND AND OBJECTIVE: Owing to the expansion of treatment options for metastatic hormone-sensitive prostate cancer (mHSPC) and an appreciation of clinical subgroups with differential prognosis and treatment responses, prognostic and predictive bi...

Enhancing thin slice 3D T2-weighted prostate MRI with super-resolution deep learning reconstruction: Impact on image quality and PI-RADS assessment.

Magnetic resonance imaging
PURPOSES: This study aimed to assess the effectiveness of Super-Resolution Deep Learning Reconstruction (SR-DLR) -a deep learning-based technique that enhances image resolution and quality during MRI reconstruction- in improving the image quality of ...

Automatic plan selection using deep network-A prostate study.

Medical physics
BACKGROUND: Recently, high-dose-rate (HDR) brachytherapy treatment plans generation was improved with the development of multicriteria optimization (MCO) algorithms that can generate thousands of pareto optimal plans within seconds. This brings a shi...

Federated learning for enhanced dose-volume parameter prediction with decentralized data.

Medical physics
BACKGROUND: The widespread adoption of knowledge-based planning in radiation oncology clinics is hindered by the lack of data and the difficulty associated with sharing medical data.

Deep learning dose prediction to approach Erasmus-iCycle dosimetric plan quality within seconds for instantaneous treatment planning.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Fast, high-quality deep learning (DL) prediction of patient-specific 3D dose distributions can enable instantaneous treatment planning (IP), in which the treating physician can evaluate the dose and approve the plan immediatel...