BACKGROUND: Deep learning has shown promising results to generate MRI-based synthetic CTs and to enable accurate proton dose calculations on MRIs. For clinical implementation of synthetic CTs, quality assurance tools that verify their quality and rel...
Journal of applied clinical medical physics
38269961
PURPOSE: Non-Contrast Enhanced CT (NCECT) is normally required for proton dose calculation while Contrast Enhanced CT (CECT) is often scanned for tumor and organ delineation. Possible tissue motion between these two CTs raises dosimetry uncertainties...
Proton radiograph has been broadly applied in proton radiotherapy which is affected by scattered protons which result in the lower spatial resolution of proton radiographs than that of x-ray images. Traditional image denoising method may lead to the ...
The advantage of proton therapy as compared to photon therapy stems from the Bragg peak effect, which allows protons to deposit most of their energy directly at the tumor while sparing healthy tissue. However, even with such benefits, proton therapy ...
Utilising Machine Learning (ML) models to predict dosimetric parameters in pencil beam scanning proton therapy presents a promising and practical approach. The study developed Artificial Neural Network (ANN) models to predict proton beam spot size an...
. Protoacoustic imaging showed great promise in providing real-time 3D dose verification of proton therapy. However, the limited acquisition angle in protoacoustic imaging induces severe artifacts, which impairs its accuracy for dose verification. In...
BACKGROUND: Determining the optimal energy layer (EL) for each field, under considering both dose constraints and delivery efficiency, is crucial to promoting the development of proton arc therapy (PAT) technology.
Magnetic Resonance Imaging (MRI) is increasingly being used in treatment planning due to its superior soft tissue contrast, which is useful for tumor and soft tissue delineation compared to computed tomography (CT). However, MRI cannot directly provi...
To evaluate the feasibility of using a deep learning dose prediction approach to identify patients who could benefit most from proton therapy based on the normal tissue complication probability (NTCP) model.Two 3D UNets were established to predict ph...
This study aims to address the limitations of traditional methods for calculating linear energy transfer (LET), a critical component in assessing relative biological effectiveness (RBE). Currently, Monte Carlo (MC) simulation, the gold-standard for a...