. Deep learning reconstruction (DLR) algorithms exhibit object-dependent resolution and noise performance. Thus, traditional geometric CT phantoms cannot fully capture the clinical imaging performance of DLR. This study uses a patient-derived 3D-prin...
Diagnostic and interventional imaging
May 13, 2024
PURPOSE: The purpose of this study was to evaluate the achievable radiation dose reduction of an ultra-high resolution computed tomography (UHR-CT) scanner using deep learning reconstruction (DLR) while maintaining temporal bone image quality equal t...
The international journal of cardiovascular imaging
May 9, 2024
To assess the impact of low-dose contrast media (CM) injection protocol with deep learning image reconstruction (DLIR) algorithm on image quality in coronary CT angiography (CCTA). In this prospective study, patients underwent CCTA were prospectively...
Cancer imaging : the official publication of the International Cancer Imaging Society
May 9, 2024
BACKGROUND: This study systematically compares the impact of innovative deep learning image reconstruction (DLIR, TrueFidelity) to conventionally used iterative reconstruction (IR) on nodule volumetry and subjective image quality (IQ) at highly reduc...
BACKGROUND: In radiation therapy (RT), accelerated partial breast irradiation (APBI) has emerged as an increasingly preferred treatment modality over conventional whole breast irradiation due to its targeted dose delivery and shorter course of treatm...
Monte Carlo (MC) simulations are the benchmark for accurate radiotherapy dose calculations, notably in patient-specific high dose rate brachytherapy (HDR BT), in cases where considering tissue heterogeneities is critical. However, the lengthy computa...
International journal of radiation biology
Apr 30, 2024
PURPOSE: The dicentric chromosome assay (DCA), often referred to as the 'gold standard' in radiation dose estimation, exhibits significant challenges as a consequence of its labor-intensive nature and dependency on expert knowledge. Existing automate...
PURPOSE: To compare the image quality and pulmonary nodule detectability between deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V) in ultra-low-dose CT (ULD-CT).
Journal of imaging informatics in medicine
Apr 15, 2024
Convolutional neural networks (CNN) have been used for a wide variety of deep learning applications, especially in computer vision. For medical image processing, researchers have identified certain challenges associated with CNNs. These challenges en...
BACKGROUND: The most recent advances in Computed Tomography (CT) image reconstruction technology are Deep learning image reconstruction (DLIR) algorithms. Due to drawbacks in Iterative reconstruction (IR) techniques such as negative image texture and...