AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiotherapy Dosage

Showing 71 to 80 of 461 articles

Clear Filters

Deep evidential learning for radiotherapy dose prediction.

Computers in biology and medicine
BACKGROUND: As we navigate towards integrating deep learning methods in the real clinic, a safety concern lies in whether and how the model can express its own uncertainty when making predictions. In this work, we present a novel application of an un...

Online Adaptive Proton Therapy Facilitated by Artificial Intelligence-Based Autosegmentation in Pencil Beam Scanning Proton Therapy.

International journal of radiation oncology, biology, physics
PURPOSE: Online adaptive proton therapy (oAPT) is essential to address interfractional anatomical changes in patients receiving pencil beam scanning proton therapy. Artificial intelligence (AI)-based autosegmentation can increase the efficiency and a...

Deep learning-based statistical robustness evaluation of intensity-modulated proton therapy for head and neck cancer.

Physics in medicine and biology
. Previous methods for robustness evaluation rely on dose calculation for a number of uncertainty scenarios, which either fails to provide statistical meaning when the number is too small (e.g., ∼8) or becomes unfeasible in daily clinical practice wh...

Deep learning-based prediction of the dose-volume histograms for volumetric modulated arc therapy of left-sided breast cancer.

Medical physics
BACKGROUND: The advancements in artificial intelligence and computational power have made deep learning an attractive tool for radiotherapy treatment planning. Deep learning has the potential to significantly simplify the trial-and-error process invo...

Nested CNN architecture for three-dimensional dose distribution prediction in tomotherapy for prostate cancer.

Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al]
BACKGROUND: The hypothesis of changing network layers to increase the accuracy of dose distribution prediction, instead of expanding their dimensions, which requires complex calculations, has been considered in our study.

Evaluation of deep learning based dose prediction in head and neck cancer patients using two different types of input contours.

Journal of applied clinical medical physics
PURPOSE: This study evaluates deep learning (DL) based dose prediction methods in head and neck cancer (HNC) patients using two types of input contours.

Automated confidence estimation in deep learning auto-segmentation for brain organs at risk on MRI for radiotherapy.

Journal of applied clinical medical physics
PURPOSE: We have built a novel AI-driven QA method called AutoConfidence (ACo), to estimate segmentation confidence on a per-voxel basis without gold standard segmentations, enabling robust, efficient review of automated segmentation (AS). We have de...

Clinical implementation of deep learning robust IMPT planning in oropharyngeal cancer patients: A blinded clinical study.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: This study aimed to evaluate the plan quality of our deep learning-based automated treatment planning method for robustly optimized intensity-modulated proton therapy (IMPT) plans in patients with oropharyngeal carcinoma (OPC)...

Deep learning for contour quality assurance for RTOG 0933: In-silico evaluation.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
PURPOSE: To validate a CT-based deep learning (DL) hippocampal segmentation model trained on a single-institutional dataset and explore its utility for multi-institutional contour quality assurance (QA).