AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiotherapy Planning, Computer-Assisted

Showing 31 to 40 of 699 articles

Clear Filters

Advanced prediction of multi-leaf collimator leaf position using artificial neural network.

Medical physics
BACKGROUND: Multi-leaf collimators (MLCs) are crucial for modern radiotherapy as they ensure precise target irradiation through accurate leaf positioning. Accurate prediction of MLC leaf positions is vital for the effectiveness and safety of treatmen...

Enhancing automated right-sided early-stage breast cancer treatments via deep learning model adaptation without additional training.

Medical physics
BACKGROUND: Input data curation and model training are essential, but time-consuming steps in building a deep-learning (DL) auto-planning model, ensuring high-quality data and optimized performance. Ideally, one would prefer a DL model that exhibits ...

Real-time adaptive proton therapy: An AI-based spatio-temporal mono-energetic dose calculation model (CC-LSTM).

Computers in biology and medicine
PURPOSE: To develop a fully AI-based dose estimation model capable of learning and estimating single pencil beam dose distributions, and to verify its performance by testing the model's generalizability on unseen, previously delivered treatment plans...

Evaluation and failure analysis of four commercial deep learning-based autosegmentation software for abdominal organs at risk.

Journal of applied clinical medical physics
PURPOSE: Deep learning-based segmentation of organs-at-risk (OAR) is emerging to become mainstream in clinical practice because of the superior performance over atlas and model-based autocontouring methods. While several commercial deep learning-base...

A deep learning-based peer review method for radiotherapy planning.

Medical physics
BACKGROUND: Quality control (QC) in radiotherapy planning is crucial for ensuring treatment efficacy and patient safety. Traditionally, QC relies on standard indicators and subjective assessments, which may lead to inconsistencies.

Assessing multiple MRI sequences in deep learning-based synthetic CT generation for MR-only radiation therapy of head and neck cancers.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
PURPOSE: This study investigated the effect of multiple magnetic resonance (MR) sequences on the quality of deep-learning-based synthetic computed tomography (sCT) generation in the head and neck region.

Novel pre-spatial data fusion deep learning approach for multimodal volumetric outcome prediction models in radiotherapy.

Medical physics
BACKGROUND: Given the recent increased emphasis on multimodal neural networks to solve complex modeling tasks, the problem of outcome prediction for a course of treatment can be framed as fundamentally multimodal in nature. A patient's response to tr...

The implementation of knowledge-based planning with partial OAR contours for prostate radiotherapy.

Journal of applied clinical medical physics
PURPOSE: Intra- and inter-observer contour uncertainty is a continuous challenge in treatment planning for radiotherapy. Our proposed solution to address this challenge is the use of partial contours for treatment planning, focusing on uninvolved or ...

Personalized auto-segmentation for magnetic resonance imaging-guided adaptive radiotherapy of large brain metastases.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Magnetic resonance-guided adaptive radiotherapy (MRgART) may improve the efficacy of large brain metastases (BMs)(≥2 cm), whereas the workflow requires optimized. This study develops a two-stage, personalized deep learning aut...

Synthetic CT generation from CBCT and MRI using StarGAN in the Pelvic Region.

Radiation oncology (London, England)
RATIONALE AND OBJECTIVES: This study evaluated StarGAN, a deep learning model designed to generate synthetic computed tomography (sCT) images from magnetic resonance imaging (MRI) and cone-beam computed tomography (CBCT) data using a single model. Th...