PURPOSE: Retinopathy of prematurity (ROP), a leading cause of childhood blindness, is diagnosed by clinical ophthalmoscopic examinations or reading retinal images. Plus disease, defined as abnormal tortuosity and dilation of the posterior retinal blo...
Retinopathy of prematurity (ROP) is a leading cause of childhood blindness worldwide. The diagnosis of ROP is subclassified by zone, stage, and plus disease, with each area demonstrating significant intra- and interexpert subjectivity and disagreemen...
BACKGROUND/AIM: To automatically detect and classify the early stages of retinopathy of prematurity (ROP) using a deep convolutional neural network (CNN).
PURPOSE: To evaluate the clinical usefulness of a quantitative deep learning-derived vascular severity score for retinopathy of prematurity (ROP) by assessing its correlation with clinical ROP diagnosis and by measuring clinician agreement in applyin...
PURPOSE: Stage is an important feature to identify in retinal images of infants at risk of retinopathy of prematurity (ROP). The purpose of this study was to implement a convolutional neural network (CNN) for binary detection of stages 1, 2, and 3 in...
To describe a database of longitudinally graded telemedicine retinal images to be used as a comparator for future studies assessing grader recall bias and ability to detect typical progression (e.g. International Classification of Retinopathy of Prem...
OBJECTIVES: Childhood blindness from retinopathy of prematurity (ROP) is increasing as a result of improvements in neonatal care worldwide. We evaluate the effectiveness of artificial intelligence (AI)-based screening in an Indian ROP telemedicine pr...
IMPORTANCE: A retinopathy of prematurity (ROP) diagnosis currently relies on indirect ophthalmoscopy assessed by experienced ophthalmologists. A deep learning algorithm based on retinal images may facilitate early detection and timely treatment of RO...