AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Risk Assessment

Showing 391 to 400 of 2320 articles

Clear Filters

Acute kidney disease in hospitalized pediatric patients: risk prediction based on an artificial intelligence approach.

Renal failure
BACKGROUND: Acute kidney injury (AKI) and acute kidney disease (AKD) are prevalent among pediatric patients, both linked to increased mortality and extended hospital stays. Early detection of kidney injury is crucial for improving outcomes. This stud...

Residual risk prediction in anticoagulated patients with atrial fibrillation using machine learning: A report from the GLORIA-AF registry phase II/III.

European journal of clinical investigation
BACKGROUND: Although oral anticoagulation decreases the risk of thromboembolism in patients with atrial fibrillation (AF), a residual risk of thrombotic events still exists. This study aimed to construct machine learning (ML) models to predict the re...

Artificial Intelligence Advancements in Cardiomyopathies: Implications for Diagnosis and Management of Arrhythmogenic Cardiomyopathy.

Current heart failure reports
PURPOSE OF REVIEW: This review aims to explore the emerging potential of artificial intelligence (AI) in refining risk prediction, clinical diagnosis, and treatment stratification for cardiomyopathies, with a specific emphasis on arrhythmogenic cardi...

Machine learning in predicting heart failure survival: a review of current models and future prospects.

Heart failure reviews
Heart failure is a complex and prevalent condition with significant implications for patient management and survival prediction. Traditional predictive models often fall short in accuracy due to their reliance on pre-specified predictors and assumpti...

Integrating AI-driven wearable devices and biometric data into stroke risk assessment: A review of opportunities and challenges.

Clinical neurology and neurosurgery
Stroke is a leading cause of morbidity and mortality worldwide, and early detection of risk factors is critical for prevention and improved outcomes. Traditional stroke risk assessments, relying on sporadic clinical visits, fail to capture dynamic ch...

Machine Learning-Based Prediction for In-Hospital Mortality After Acute Intracerebral Hemorrhage Using Real-World Clinical and Image Data.

Journal of the American Heart Association
BACKGROUND: Machine learning (ML) techniques are widely employed across various domains to achieve accurate predictions. This study assessed the effectiveness of ML in predicting early mortality risk among patients with acute intracerebral hemorrhage...

Predicting 30-day reoperation following primary total knee arthroplasty: machine learning model outperforms the ACS risk calculator.

Medical & biological engineering & computing
The ACS risk calculator (ARC) has proven less effective in predicting patient-specific risk of early reoperation after primary total knee arthroplasty (TKA), compromising care quality and cost efficiency. This study compared the performance of a mach...

Prediction of Two Year Survival Following Elective Repair of Abdominal Aortic Aneurysms at A Single Centre Using A Random Forest Classification Algorithm.

European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery
OBJECTIVE: The decision to electively repair an abdominal aortic aneurysm (AAA) involves balancing the risk of rupture, peri-procedural death, and life expectancy. Random forest classifiers (RFCs) are powerful machine learning algorithms. The aim of ...

Impact of Inflammation After Cardiac Surgery on 30-Day Mortality and Machine Learning Risk Prediction.

Journal of cardiothoracic and vascular anesthesia
OBJECTIVES: To investigate the impact of systemic inflammatory response syndrome (SIRS) on 30-day mortality following cardiac surgery and develop a machine learning model to predict SIRS.

Advancing personalised care in atrial fibrillation and stroke: The potential impact of AI from prevention to rehabilitation.

Trends in cardiovascular medicine
Atrial fibrillation (AF) is a complex condition caused by various underlying pathophysiological disorders and is the most common heart arrhythmia worldwide, affecting 2 % of the European population. This prevalence increases with age, imposing signif...