Existing systems for automating the assessment of risk-of-bias (RoB) in medical studies are supervised approaches that require substantial training data to work well. However, recent revisions to RoB guidelines have resulted in a scarcity of availabl...
OBJECTIVE: This study aimed to use machine learning (ML) to establish risk factor and prediction models of osteonecrosis of the femoral head (ONFH) in patients with femoral neck fractures (FNFs) after internal fixation.
Journal of magnetic resonance imaging : JMRI
Aug 21, 2024
BACKGROUND: Accurately assessing 5-year recurrence rates is crucial for managing non-muscle-invasive bladder carcinoma (NMIBC). However, the European Organization for Research and Treatment of Cancer (EORTC) model exhibits poor performance.
AIMS: Certain critical risk factors of heart failure with preserved ejection fraction (HFpEF) patients were significantly different from those of heart failure with reduced ejection fraction (HFrEF) patients, resulting in the limitations of existing ...
BACKGROUND: Cerebral small vessel disease (CSVD) is a major cause of stroke, particularly in the elderly population, leading to significant morbidity and mortality. Accurate identification of high-risk patients and timing of stroke occurrence plays a...
BACKGROUND: Delayed clinically important postoperative nausea and vomiting (CIPONV) could lead to significant consequences following surgery. We aimed to develop a prediction model for it using machine learning algorithms utilizing perioperative data...
BACKGROUND: To construct and evaluate a predictive model for in-hospital mortality among critically ill patients with acute kidney injury (AKI) undergoing continuous renal replacement therapy (CRRT), based on nine machine learning (ML) algorithm.
The aim of this study was to develop a medical imaging and comprehensive stacked learning-based method for predicting high- and low-risk thymoma. A total of 126 patients with thymomas and 5 patients with thymic carcinoma treated at our institution, i...
Determining the occurrence of disinfection byproducts (DBPs) in drinking water distribution system (DWDS) remains challenging. Predicting DBPs using readily available water quality parameters can help to understand DBPs associated risks and capture t...