AI Medical Compendium Topic:
Risk Assessment

Clear Filters Showing 801 to 810 of 2400 articles

-A machine learning model to predict surgical site infection after surgery of lower extremity fractures.

International orthopaedics
PURPOSE: This study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site infection in patients with lower extremity fractures.

Pre-hospital glycemia as a biomarker for in-hospital all-cause mortality in diabetic patients - a pilot study.

Cardiovascular diabetology
BACKGROUND: Type 2 Diabetes Mellitus (T2DM) presents a significant healthcare challenge, with considerable economic ramifications. While blood glucose management and long-term metabolic target setting for home care and outpatient treatment follow est...

Two-Stage Machine Learning-Based Approach to Predict Points of Departure for Human Noncancer and Developmental/Reproductive Effects.

Environmental science & technology
Chemical points of departure (PODs) for critical health effects are crucial for evaluating and managing human health risks and impacts from exposure. However, PODs are unavailable for most chemicals in commerce due to a lack of toxicity data. We the...

Exploring machine learning strategies for predicting cardiovascular disease risk factors from multi-omic data.

BMC medical informatics and decision making
BACKGROUND: Machine learning (ML) classifiers are increasingly used for predicting cardiovascular disease (CVD) and related risk factors using omics data, although these outcomes often exhibit categorical nature and class imbalances. However, little ...

Precision in Prevention: Tailoring Single-Use Negative Pressure Wound Therapy Utilization Through Artificial Intelligence-Based Surgical Site Complications Risk and Cost Modeling.

Surgical infections
Surgical site complications (SSCs) are common, yet preventable hospital-acquired conditions. Single-use negative pressure wound therapy (sNPWT) has been shown to be effective in reducing rates of these complications. In the era of value-based care, ...

Emergency department risk model: timely identification of patients for outpatient care coordination.

The American journal of managed care
OBJECTIVE: Major depressive disorder (MDD) is linked to a 61% increased risk of emergency department (ED) visits and frequent ED usage. Collaborative care management (CoCM) models target MDD treatment in primary care, but how best to prioritize patie...

Development of interpretable machine learning models for prediction of acute kidney injury after noncardiac surgery: a retrospective cohort study.

International journal of surgery (London, England)
BACKGROUND: Early identification of patients at high-risk of postoperative acute kidney injury (AKI) can facilitate the development of preventive approaches. This study aimed to develop prediction models for postoperative AKI in noncardiac surgery us...

Benchmarking clinical risk prediction algorithms with ensemble machine learning for the noninvasive diagnosis of liver fibrosis in NAFLD.

Hepatology (Baltimore, Md.)
BACKGROUND AND AIMS: Ensemble machine-learning methods, like the superlearner, combine multiple models into a single one to enhance predictive accuracy. Here we explore the potential of the superlearner as a benchmarking tool for clinical risk predic...

Data mining and machine learning in HIV infection risk research: An overview and recommendations.

Artificial intelligence in medicine
In the contemporary era, the applications of data mining and machine learning have permeated extensively into medical research, significantly contributing to areas such as HIV studies. By reviewing 38 articles published in the past 15 years, the stud...