PURPOSE: This study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site infection in patients with lower extremity fractures.
BACKGROUND: Type 2 Diabetes Mellitus (T2DM) presents a significant healthcare challenge, with considerable economic ramifications. While blood glucose management and long-term metabolic target setting for home care and outpatient treatment follow est...
Chemical points of departure (PODs) for critical health effects are crucial for evaluating and managing human health risks and impacts from exposure. However, PODs are unavailable for most chemicals in commerce due to a lack of toxicity data. We the...
BMC medical informatics and decision making
May 2, 2024
BACKGROUND: Machine learning (ML) classifiers are increasingly used for predicting cardiovascular disease (CVD) and related risk factors using omics data, although these outcomes often exhibit categorical nature and class imbalances. However, little ...
Surgical site complications (SSCs) are common, yet preventable hospital-acquired conditions. Single-use negative pressure wound therapy (sNPWT) has been shown to be effective in reducing rates of these complications. In the era of value-based care, ...
OBJECTIVE: Major depressive disorder (MDD) is linked to a 61% increased risk of emergency department (ED) visits and frequent ED usage. Collaborative care management (CoCM) models target MDD treatment in primary care, but how best to prioritize patie...
BACKGROUND: Acute kidney disease (AKD) affects more than half of critically ill elderly patients with acute kidney injury (AKI), which leads to worse short-term outcomes.
International journal of surgery (London, England)
May 1, 2024
BACKGROUND: Early identification of patients at high-risk of postoperative acute kidney injury (AKI) can facilitate the development of preventive approaches. This study aimed to develop prediction models for postoperative AKI in noncardiac surgery us...
BACKGROUND AND AIMS: Ensemble machine-learning methods, like the superlearner, combine multiple models into a single one to enhance predictive accuracy. Here we explore the potential of the superlearner as a benchmarking tool for clinical risk predic...
In the contemporary era, the applications of data mining and machine learning have permeated extensively into medical research, significantly contributing to areas such as HIV studies. By reviewing 38 articles published in the past 15 years, the stud...