AIMC Topic:
ROC Curve

Clear Filters Showing 1291 to 1300 of 3174 articles

dSPIC: a deep SPECT image classification network for automated multi-disease, multi-lesion diagnosis.

BMC medical imaging
BACKGROUND: Functional imaging especially the SPECT bone scintigraphy has been accepted as the effective clinical tool for diagnosis, treatment, evaluation, and prevention of various diseases including metastasis. However, SPECT imaging is brightly c...

A New Deep Learning-Based Methodology for Video Deepfake Detection Using XGBoost.

Sensors (Basel, Switzerland)
Currently, face-swapping deepfake techniques are widely spread, generating a significant number of highly realistic fake videos that threaten the privacy of people and countries. Due to their devastating impacts on the world, distinguishing between r...

Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks.

Nature communications
Retinal fundus diseases can lead to irreversible visual impairment without timely diagnoses and appropriate treatments. Single disease-based deep learning algorithms had been developed for the detection of diabetic retinopathy, age-related macular de...

Machine learning model for early prediction of acute kidney injury (AKI) in pediatric critical care.

Critical care (London, England)
BACKGROUND: Acute kidney injury (AKI) in pediatric critical care patients is diagnosed using elevated serum creatinine, which occurs only after kidney impairment. There are no treatments other than supportive care for AKI once it has developed, so it...

Radiomics Analysis Based on Automatic Image Segmentation of DCE-MRI for Predicting Triple-Negative and Nontriple-Negative Breast Cancer.

Computational and mathematical methods in medicine
PURPOSE: To investigate whether quantitative radiomics features extracted from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) could be used to differentiate triple-negative breast cancer (TNBC) and nontriple-negative breast cancer (no...

Diagnostic performance of deep-learning-based screening methods for diabetic retinopathy in primary care-A meta-analysis.

PloS one
BACKGROUND: Diabetic retinopathy (DR) affects 10-24% of patients with diabetes mellitus type 1 or 2 in the primary care (PC) sector. As early detection is crucial for treatment, deep learning screening methods in PC setting could potentially aid in a...

Comparison of machine and deep learning for the classification of cervical cancer based on cervicography images.

Scientific reports
Cervical cancer is the second most common cancer in women worldwide with a mortality rate of 60%. Cervical cancer begins with no overt signs and has a long latent period, making early detection through regular checkups vitally immportant. In this stu...

Artificial intelligence in orthopedic implant model classification: a systematic review.

Skeletal radiology
Although artificial intelligence models have demonstrated high accuracy in identifying specific orthopedic implant models from imaging, which is an important and time-consuming task, the scope of prior works and performance of prior models have not b...

Deep learning-based detection of eosinophilic esophagitis.

Endoscopy
BACKGROUND: For eosinophilic esophagitis (EoE), a substantial diagnostic delay is still a clinically relevant phenomenon. Deep learning-based algorithms have demonstrated potential in medical image analysis. Here we establish a convolutional neuronal...