The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific software is scarce, and overoptimistic evaluation and limited cross-study generalization are prevailing i...
OBJECTIVE: The present study aimed to verify the classification performance of deep learning (DL) models for diagnosing fractures of the mandibular condyle on panoramic radiographs using data sets from two hospitals and to compare their internal and ...
BACKGROUND: The clinical impact of postoperative opioid use requires accurate prediction strategies to identify at-risk patients. We utilize preoperative claims data to predict postoperative opioid refill and new persistent use in opioid-naïve patien...
In response to the pandemic caused by SARS-CoV-2, we constructed a hybrid support vector machine (SVM) classification model using a set of publicly posted SARS-CoV-2 pseudotyped particle (PP) entry assay repurposing screen data to identify novel pote...
The amyloid state of proteins is widely studied with relevance to neurology, biochemistry, and biotechnology. In contrast with nearly amorphous aggregation, the amyloid state has a well-defined structure, consisting of parallel and antiparallel β-she...
With the rapid growth and increasing use of brain MRI, there is an interest in automated image classification to aid human interpretation and improve workflow. We aimed to train a deep convolutional neural network and assess its performance in identi...
BACKGROUND AND OBJECTIVES: Diagnosis of Pulmonary Rifampicin Resistant Tuberculosis (RR-TB) with the Drug-Susceptibility Test (DST) is costly and time-consuming. Furthermore, GeneXpert for rapid diagnosis is not widely available in Indonesia. This st...
The goal of this study was to develop a deep learning-based algorithm to predict temporomandibular joint (TMJ) disc perforation based on the findings of magnetic resonance imaging (MRI) and to validate its performance through comparison with previous...
BACKGROUND: Accurate and robust pathological image analysis for colorectal cancer (CRC) diagnosis is time-consuming and knowledge-intensive, but is essential for CRC patients' treatment. The current heavy workload of pathologists in clinics/hospitals...
Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
Mar 23, 2021
PURPOSE: To automate diagnostic chest radiograph imaging quality control (lung inclusion at all four edges, patient rotation, and correct inspiration) using convolutional neural network models.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.