AIMC Topic: Semantics

Clear Filters Showing 31 to 40 of 1394 articles

Real-world insights of patient voices with age-related macular degeneration in the Republic of Korea and Taiwan: an AI-based Digital Listening study by Semantic-Natural Language Processing.

BMC medical informatics and decision making
BACKGROUND: In this era of active online communication, patients increasingly share their healthcare experiences, concerns, and needs across digital platforms. Leveraging these vast repositories of real-world information, Digital Listening enables th...

Histopathology image classification based on semantic correlation clustering domain adaptation.

Artificial intelligence in medicine
Deep learning has been successfully applied to histopathology image classification tasks. However, the performance of deep models is data-driven, and the acquisition and annotation of pathological image samples are difficult, which limit the model's ...

Comparing neural language models for medical concept representation and patient trajectory prediction.

Artificial intelligence in medicine
Effective representation of medical concepts is crucial for secondary analyses of electronic health records. Neural language models have shown promise in automatically deriving medical concept representations from clinical data. However, the comparat...

Dual-branch dynamic hierarchical U-Net with multi-layer space fusion attention for medical image segmentation.

Scientific reports
Accurate segmentation of organs or lesions from medical images is essential for accurate disease diagnosis and organ morphometrics. Previously, most researchers mainly added feature extraction modules and simply aggregated the semantic features to U-...

Integration of large-scale community-developed causal loop diagrams: a Natural Language Processing approach to merging factors based on semantic similarity.

BMC public health
BACKGROUND: Complex public health problems have been addressed in communities through systems thinking and participatory methods like Group Model Building (GMB) and Causal Loop Diagrams (CLDs) albeit with some challenges. This study aimed to explore ...

Contextual information contributes to biomedical named entity normalization.

Journal of biomedical informatics
OBJECTIVE: As one of the most crucial upstream tasks in biomedical informatics, biomedical named entity normalization (BNEN) aims to map mentioned named entities to uniform standard identifiers or terms. Most existing methods only consider the simila...

Comparative Study of Deep Transfer Learning Models for Semantic Segmentation of Human Mesenchymal Stem Cell Micrographs.

International journal of molecular sciences
The aim of this study is to conduct a comparative assessment of the effectiveness of neural network models-U-Net, DeepLabV3+, SegNet and Mask R-CNN-for the semantic segmentation of micrographs of human mesenchymal stem cells (MSCs). A dataset of 320 ...

Learning Consistent Semantic Representation for Chest X-ray via Anatomical Localization in Self-Supervised Pre-Training.

IEEE journal of biomedical and health informatics
Despite the similar global structures in Chest X-ray (CXR) images, the same anatomy exhibits varying appearances across images, including differences in local textures, shapes, colors, etc. Learning consistent representations for anatomical semantics...

DRGCL: Drug Repositioning via Semantic-Enriched Graph Contrastive Learning.

IEEE journal of biomedical and health informatics
Drug repositioning greatly reduces drug development costs and time by discovering new indications for existing drugs. With the development of technology and large-scale biological databases, computational drug repositioning has increasingly attracted...

Semantic-Enhanced Graph Contrastive Learning With Adaptive Denoising for Drug Repositioning.

IEEE journal of biomedical and health informatics
The traditional drug development process requires a significant investment in workforce and financial resources. Drug repositioning as an efficient alternative has attracted much attention during the last few years. Despite the wide application and s...