AIMC Topic: Sensitivity and Specificity

Clear Filters Showing 141 to 150 of 2872 articles

Video Clip Extraction From Fetal Ultrasound Scans Using Artificial Intelligence to Allow Remote Second Expert Review for Congenital Heart Disease.

Prenatal diagnosis
OBJECTIVE: To use artificial intelligence (AI) to automatically extract video clips of the fetal heart from a stream of ultrasound video, and to assess the performance of these when used for remote second review.

Enhancing deep learning methods for brain metastasis detection through cross-technique annotations on SPACE MRI.

European radiology experimental
BACKGROUND: Gadolinium-enhanced "sampling perfection with application-optimized contrasts using different flip angle evolution" (SPACE) sequence allows better visualization of brain metastases (BMs) compared to "magnetization-prepared rapid acquisiti...

Deep learning opportunistic screening for osteoporosis and osteopenia using radiographs of the foot or ankle - A pilot study.

European journal of radiology
BACKGROUND: The gold standard method for diagnosing low bone mineral density (BMD) is using dual-energy X-ray absorptiometry (DXA) however, most patients with low BMD are often not screened. We aimed to create a deep learning (DL) model to screen for...

Machine learning for predicting severe dengue in Puerto Rico.

Infectious diseases of poverty
BACKGROUND: Distinguishing between non-severe and severe dengue is crucial for timely intervention and reducing morbidity and mortality. World Health Organization (WHO)-recommended warning signs offer a practical approach for clinicians but have limi...

Automatic cervical lymph nodes detection and segmentation in heterogeneous computed tomography images using deep transfer learning.

Scientific reports
To develop a deep learning model using transfer learning for automatic detection and segmentation of neck lymph nodes (LNs) in computed tomography (CT) images, the study included 11,013 annotated LNs with a short-axis diameter ≥ 3 mm from 626 head an...

Deep learning for automated hip fracture detection and classification : achieving superior accuracy.

The bone & joint journal
AIMS: The aim of this study was to develop and evaluate a deep learning-based model for classification of hip fractures to enhance diagnostic accuracy.

Optimizing Skin Cancer Diagnosis: A Modified Ensemble Convolutional Neural Network for Classification.

Microscopy research and technique
Skin cancer is recognized as one of the most harmful cancers worldwide. Early detection of this cancer is an effective measure for treating the disease efficiently. Traditional skin cancer detection methods face scalability challenges and overfitting...

Developing an interpretable machine learning model for diagnosing gout using clinical and ultrasound features.

European journal of radiology
OBJECTIVE: To develop a machine learning (ML) model using clinical data and ultrasound features for gout prediction, and apply SHapley Additive exPlanations (SHAP) for model interpretation.