Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
40040169
Reducing electrophysiological (EP) signal noise is essential for diagnosis, mapping, and ablation, yet traditional approaches are suboptimal. This study tests the hypothesis that generative artificial intelligence (AI), specifically Variational Autoe...
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
40040096
Brain-computer interfaces (BCIs) suffer from limited accuracy due to noisy electroencephalography (EEG) signals. Existing denoising methods often remove artifacts such as eye movement or use techniques such as linear detrending, which inadvertently d...
BACKGROUND: To evaluate the performance of a deep learning reconstruction (DLR) based on Adaptive-Compressed sensing (CS)-Network for brain MRI and validate it in a clinical setting.
Enduring studies in the field of early breast cancer screening are investigating the use of multispectral transmission imaging. The frame accumulation system handles multispectral transmission images with deprived grayscale and unsatisfactory resolut...
Diffusion MRI (dMRI) is the primary imaging modality used to study brain microstructure in vivo. Reliable and computationally efficient parameter inference for common dMRI biophysical models is a challenging inverse problem, due to factors such as va...
Noise reduction is essential to improve the diagnostic quality of low-dose CT (LDCT) images. In this regard, data-driven denoising methods based on generative adversarial networks (GAN) have shown promising results. However, custom designs with 2D co...
PURPOSE: Trityl OXO71-based pulse electron paramagnetic resonance imaging (EPRI) is an excellent technique to obtain partial pressure of oxygen (pO) maps in tissues. In this study, we used deep learning techniques to denoise 3D EPR amplitude and pO m...
In infrared Fourier transform spectral imaging applied to biomedical challenges, data quality is of primary importance to achieving clinical objectives. However, different noise sources affect the infrared signal coming from the sample. Generally, th...
Bio-inspired robot controllers are becoming more complex as we strive to make them more robust to, and flexible in, noisy, real-world environments. A stable heteroclinic network (SHN) is a dynamical system that produces cyclical state transitions usi...
BACKGROUND AND PURPOSE: Deep learning (DL)-based reconstruction enables improving the quality of MR images acquired with a short scan time. We aimed to prospectively compare the image quality and diagnostic performance in evaluating cervical degenera...