AIMC Topic: Substance-Related Disorders

Clear Filters Showing 1 to 10 of 62 articles

Exposotypes in psychotic disorders.

Scientific reports
Psychiatry lags in adopting etiological approaches to diagnosis, prognosis, and outcome prediction compared to the rest of medicine. Etiological factors such as childhood trauma (CHT), substance use (SU), and socioeconomic status (SES) significantly ...

Explainable illicit drug abuse prediction using hematological differences.

Scientific reports
This study aimed to develop a reliable and explainable predictive model for illicit drug use (IDU). The model uses a machine learning (ML) algorithm to predict IDU using hematological differences between illicit drug users (IDUr) and non-users (n-IDU...

Differential Analysis of Age, Gender, Race, Sentiment, and Emotion in Substance Use Discourse on Twitter During the COVID-19 Pandemic: A Natural Language Processing Approach.

JMIR infodemiology
BACKGROUND: User demographics are often hidden in social media data due to privacy concerns. However, demographic information on substance use (SU) can provide valuable insights, allowing public health policy makers to focus on specific cohorts and d...

Development of a Cohesive Predictive Model for Substance Use Disorder Rehabilitation Using Passive Digital Biomarkers, Psychological Assessments, and Automated Facial Emotion Recognition: Protocol for a Prospective Cohort Study.

JMIR research protocols
BACKGROUND: Substance use disorder (SUD) involves excessive substance consumption and persistent reward-seeking behaviors, leading to serious physical, cognitive, and social consequences. This disorder is a global health crisis tied to increased mort...

The risk factors for relapse behavior in individuals with substance use disorders: An interpretable machine learning study.

Journal of affective disorders
BACKGROUND: Substance abuse has become a serious public health problem worldwide, and finding effective prevention and treatment strategies is undoubtedly an urgent need. This study addresses the risk factors that lead to relapse behaviors among subs...

Large-Scale Deep Learning-Enabled Infodemiological Analysis of Substance Use Patterns on Social Media: Insights From the COVID-19 Pandemic.

JMIR infodemiology
BACKGROUND: The COVID-19 pandemic intensified the challenges associated with mental health and substance use (SU), with societal and economic upheavals leading to heightened stress and increased reliance on drugs as a coping mechanism. Centers for Di...

Changes in recreational drug use, reasons for those changes and their consequence during and after the COVID-19 pandemic in the UK.

Comprehensive psychiatry
Changes in drug use in the general population during the COVID-19 pandemic and their long-term consequences are not well understood. We employed natural language processing and machine learning to analyse a large dataset of self-reported rates of and...

Improving diagnosis-based quality measures: an application of machine learning to the prediction of substance use disorder among outpatients.

BMJ open quality
OBJECTIVE: Substance use disorder (SUD) is clinically under-detected and under-documented. We built and validated machine learning (ML) models to estimate SUD prevalence from electronic health record (EHR) data and to assess variation in facility-lev...

Machine Learning-Based Prediction of Substance Use in Adolescents in Three Independent Worldwide Cohorts: Algorithm Development and Validation Study.

Journal of medical Internet research
BACKGROUND: To address gaps in global understanding of cultural and social variations, this study used a high-performance machine learning (ML) model to predict adolescent substance use across three national datasets.

Machine learning to detect recent recreational drug use in intensive cardiac care units.

Archives of cardiovascular diseases
BACKGROUND: Although recreational drug use is a strong risk factor for acute cardiovascular events, systematic testing is currently not performed in patients admitted to intensive cardiac care units, with a risk of underdetection. To address this iss...