AIMC Topic: Support Vector Machine

Clear Filters Showing 301 to 310 of 4812 articles

Combining machine learning with external validation to explore necroptosis and immune response in moyamoya disease.

BMC immunology
Moyamoya disease (MMD) is a rare chronic vascular disease leads to cognitive impairment and stroke with its etiology unknown. The relationship between necroptosis or necroinflammation and MMD pathogenesis was poorly understood. Differentially express...

Use of machine learning algorithms to construct models of symptom burden cluster risk in breast cancer patients undergoing chemotherapy.

Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer
PURPOSE: To develop models using different machine learning algorithms to predict high-risk symptom burden clusters in breast cancer patients undergoing chemotherapy, and to determine an optimal model.

The machine learning algorithm based on decision tree optimization for pattern recognition in track and field sports.

PloS one
This study aims to solve the problems of insufficient accuracy and low efficiency of the existing methods in sprint pattern recognition to optimize the training and competition strategies of athletes. Firstly, the data collected in this study come fr...

Discrimination of the Lame Limb in Horses Using a Machine Learning Method (Support Vector Machine) Based on Asymmetry Indices Measured by the EQUISYM System.

Sensors (Basel, Switzerland)
Lameness detection in horses is a critical challenge in equine veterinary practice, particularly when symptoms are mild. This study aimed to develop a predictive system using a support vector machine (SVM) to identify the affected limb in horses trot...

Machine Learning-Driven Identification of Molecular Subgroups in Medulloblastoma via Gene Expression Profiling.

Clinical oncology (Royal College of Radiologists (Great Britain))
AIMS: Medulloblastoma (MB) is the most prevalent malignant brain tumour in children, characterised by substantial molecular heterogeneity across its subgroups. Accurate classification is pivotal for personalised treatment strategies and prognostic as...

Optimized machine learning approaches to combine surface-enhanced Raman scattering and infrared data for trace detection of xylazine in illicit opioids.

The Analyst
Infrared absorption spectroscopy and surface-enhanced Raman spectroscopy were integrated into three data fusion strategies-hybrid (concatenated spectra), mid-level (extracted features from both datasets) and high-level (fusion of predictions from bot...

Enhanced EEG-based cognitive workload detection using RADWT and machine learning.

Neuroscience
Understanding cognitive workload improves learning performance and provides insights into human cognitive processes. Estimating cognitive workload finds practical applications in adaptive learning systems, brain-computer interfaces, and cognitive mon...

Sorghum yield prediction based on remote sensing and machine learning in conflict affected South Sudan.

Scientific reports
Sorghum cultivation plays a pivotal role in addressing food insecurity in South Sudan, but persistent conflict continues to impose challenges in the agriculture sector therefore understanding the impact of conflict on sorghum yield prediction is impo...

Generalizability of machine learning models for diabetes detection a study with nordic islet transplant and PIMA datasets.

Scientific reports
Diabetes Mellitus (DM) is a global health challenge, and accurate early detection is critical for effective management. The study explores the potential of machine learning for improved diabetes prediction using microarray gene expression data and PI...

Assessing the diagnostic accuracy of machine learning algorithms for identification of asthma in United States adults based on NHANES dataset.

Scientific reports
Asthma diagnosis poses challenges due to underreporting of symptoms, misdiagnoses, and limitations in existing diagnostic tests. Machine learning (ML) offers a promising avenue for addressing these challenges by leveraging demographic and clinical da...