AIMC Topic: Thyroid Neoplasms

Clear Filters Showing 71 to 80 of 279 articles

Deep learning-based cell segmentation for rapid optical cytopathology of thyroid cancer.

Scientific reports
Fluorescence polarization (Fpol) imaging of methylene blue (MB) is a promising quantitative approach to thyroid cancer detection. Clinical translation of MB Fpol technology requires reduction of the data analysis time that can be achieved via deep le...

Ultrasound-based nomogram to predict the recurrence in papillary thyroid carcinoma using machine learning.

BMC cancer
BACKGROUND AND AIMS: The recurrence of papillary thyroid carcinoma (PTC) is not unusual and associated with risk of death. This study is aimed to construct a nomogram that combines clinicopathological characteristics and ultrasound radiomics signatur...

Dual-source dual-energy CT and deep learning for equivocal lymph nodes on CT images for thyroid cancer.

European radiology
OBJECTIVES: This study investigated the diagnostic performance of dual-energy computed tomography (CT) and deep learning for the preoperative classification of equivocal lymph nodes (LNs) on CT images in thyroid cancer patients.

Smart scanning: automatic detection of superficially located lymph nodes using ultrasound - initial results.

RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin
Over the last few years, there has been an increasing focus on integrating artificial intelligence (AI) into existing imaging systems. This also applies to ultrasound. There are already applications for thyroid and breast lesions that enable AI-assis...

Deep learning models for thyroid nodules diagnosis of fine-needle aspiration biopsy: a retrospective, prospective, multicentre study in China.

The Lancet. Digital health
BACKGROUND: Accurately distinguishing between malignant and benign thyroid nodules through fine-needle aspiration cytopathology is crucial for appropriate therapeutic intervention. However, cytopathologic diagnosis is time consuming and hindered by t...

Classification of Benign-Malignant Thyroid Nodules Based on Hyperspectral Technology.

Sensors (Basel, Switzerland)
In recent years, the incidence of thyroid cancer has rapidly increased. To address the issue of the inefficient diagnosis of thyroid cancer during surgery, we propose a rapid method for the diagnosis of benign and malignant thyroid nodules based on h...

Prediction of TNFRSF9 expression and molecular pathological features in thyroid cancer using machine learning to construct Pathomics models.

Endocrine
BACKGROUND: The TNFRSF9 molecule is pivotal in thyroid carcinoma (THCA) development. This study utilizes Pathomics techniques to predict TNFRSF9 expression in THCA tissue and explore its molecular mechanisms.

A fully autonomous robotic ultrasound system for thyroid scanning.

Nature communications
The current thyroid ultrasound relies heavily on the experience and skills of the sonographer and the expertise of the radiologist, and the process is physically and cognitively exhausting. In this paper, we report a fully autonomous robotic ultrasou...

Machine learning algorithms for identifying contralateral central lymph node metastasis in unilateral cN0 papillary thyroid cancer.

Frontiers in endocrinology
PURPOSE: The incidence of thyroid cancer is growing fast and surgery is the most significant treatment of it. For patients with unilateral cN0 papillary thyroid cancer whether to dissect contralateral central lymph node is still under debating. Here,...