PURPOSE: To assess the suitability of machine learning (ML) techniques in predicting the development of fibrosis and atrophy in patients with neovascular age-related macular degeneration (nAMD), receiving anti-VEGF treatment over a 36-month period.
Artificial intelligence (AI) algorithms, encompassing machine learning and deep learning, can assist ophthalmologists in early detection of various ocular abnormalities through the analysis of retinal optical coherence tomography (OCT) images. Despit...
BACKGROUND: Despite, the potential clinical utility of 60-4 visual fields, they are not frequently used in clinical practice partly, due to the purported impact of facial contour on field defects. The purpose of this study was to design and test an a...
BACKGROUND: To validate the feasibility of building a deep learning model to predict axial length (AL) for moderate to high myopic patients from ultra-wide field (UWF) images.
Multiple sclerosis (MS) is a complex autoimmune disease characterized by inflammatory processes, demyelination, neurodegeneration, and axonal damage within the central nervous system (CNS). Retinal imaging, particularly Optical coherence tomography (...
BACKGROUND: To predict, using deep learning, the first recurrence in patients with neovascular age-related macular degeneration (nAMD) after three monthly loading injections of intravitreal anti-vascular endothelial growth factor (anti-VEGF).
Retinitis pigmentosa (RP) is often undetected in its early stages. Artificial intelligence (AI) has emerged as a promising tool in medical diagnostics. Therefore, we conducted a systematic review and meta-analysis to evaluate the diagnostic accuracy ...
Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Nov 28, 2023
Cylindrical organs, e.g., blood vessels, airways, and intestines, are ubiquitous structures in biomedical optical imaging analysis. Image segmentation of these structures serves as a vital step in tissue physiology analysis. Traditional model-driven ...
BACKGROUND/AIMS: Retinal capillary non-perfusion (NP) and neovascularisation (NV) are two of the most important angiographic changes in diabetic retinopathy (DR). This study investigated the feasibility of using deep learning (DL) models to automatic...