AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Tomography, Optical Coherence

Showing 171 to 180 of 762 articles

Clear Filters

Suitability of machine learning for atrophy and fibrosis development in neovascular age-related macular degeneration.

Acta ophthalmologica
PURPOSE: To assess the suitability of machine learning (ML) techniques in predicting the development of fibrosis and atrophy in patients with neovascular age-related macular degeneration (nAMD), receiving anti-VEGF treatment over a 36-month period.

A new convolutional neural network based on combination of circlets and wavelets for macular OCT classification.

Scientific reports
Artificial intelligence (AI) algorithms, encompassing machine learning and deep learning, can assist ophthalmologists in early detection of various ocular abnormalities through the analysis of retinal optical coherence tomography (OCT) images. Despit...

Predicting 60-4 visual field tests using 3D facial reconstruction.

The British journal of ophthalmology
BACKGROUND: Despite, the potential clinical utility of 60-4 visual fields, they are not frequently used in clinical practice partly, due to the purported impact of facial contour on field defects. The purpose of this study was to design and test an a...

Development and validation of a deep learning model to predict axial length from ultra-wide field images.

Eye (London, England)
BACKGROUND: To validate the feasibility of building a deep learning model to predict axial length (AL) for moderate to high myopic patients from ultra-wide field (UWF) images.

Artificial Intelligence for Multiple Sclerosis Management Using Retinal Images: Pearl, Peaks, and Pitfalls.

Seminars in ophthalmology
Multiple sclerosis (MS) is a complex autoimmune disease characterized by inflammatory processes, demyelination, neurodegeneration, and axonal damage within the central nervous system (CNS). Retinal imaging, particularly Optical coherence tomography (...

Preliminary analysis of predicting the first recurrence in patients with neovascular age-related macular degeneration using deep learning.

BMC ophthalmology
BACKGROUND: To predict, using deep learning, the first recurrence in patients with neovascular age-related macular degeneration (nAMD) after three monthly loading injections of intravitreal anti-vascular endothelial growth factor (anti-VEGF).

Diagnostic accuracy of artificial intelligence in detecting retinitis pigmentosa: A systematic review and meta-analysis.

Survey of ophthalmology
Retinitis pigmentosa (RP) is often undetected in its early stages. Artificial intelligence (AI) has emerged as a promising tool in medical diagnostics. Therefore, we conducted a systematic review and meta-analysis to evaluate the diagnostic accuracy ...

CylinGCN: Cylindrical structures segmentation in 3D biomedical optical imaging by a contour-based graph convolutional network.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Cylindrical organs, e.g., blood vessels, airways, and intestines, are ubiquitous structures in biomedical optical imaging analysis. Image segmentation of these structures serves as a vital step in tissue physiology analysis. Traditional model-driven ...

Predicting Visual Acuity Responses to Anti-VEGF Treatment in the Comparison of Age-related Macular Degeneration Treatments Trials Using Machine Learning.

Ophthalmology. Retina
PURPOSE: To evaluate multiple machine learning (ML) models for predicting 2-year visual acuity (VA) responses to anti-vascular endothelial growth factor (anti-VEGF) treatment in the Comparison of Age-related Macular Degeneration (AMD) Treatments Tria...

Automated segmentation of ultra-widefield fluorescein angiography of diabetic retinopathy using deep learning.

The British journal of ophthalmology
BACKGROUND/AIMS: Retinal capillary non-perfusion (NP) and neovascularisation (NV) are two of the most important angiographic changes in diabetic retinopathy (DR). This study investigated the feasibility of using deep learning (DL) models to automatic...