AIMC Topic: Tomography, Optical Coherence

Clear Filters Showing 341 to 350 of 808 articles

Classifying central serous chorioretinopathy subtypes with a deep neural network using optical coherence tomography images: a cross-sectional study.

Scientific reports
Central serous chorioretinopathy (CSC) is the fourth most common retinopathy and can reduce quality of life. CSC is assessed using optical coherence tomography (OCT), but deep learning systems have not been used to classify CSC subtypes. This study a...

Non-invasive scoring of cellular atypia in keratinocyte cancers in 3D LC-OCT images using Deep Learning.

Scientific reports
Diagnosis based on histopathology for skin cancer detection is today's gold standard and relies on the presence or absence of biomarkers and cellular atypia. However it suffers drawbacks: it requires a strong expertise and is time-consuming. Moreover...

Predicting Visual Fields From Optical Coherence Tomography via an Ensemble of Deep Representation Learners.

American journal of ophthalmology
PURPOSE: To develop and validate a deep learning method of predicting visual function from spectral domain optical coherence tomography (SD-OCT)-derived retinal nerve fiber layer thickness (RNFLT) measurements and corresponding SD-OCT images.

Deep Learning to Detect OCT-derived Diabetic Macular Edema from Color Retinal Photographs: A Multicenter Validation Study.

Ophthalmology. Retina
PURPOSE: To validate the generalizability of a deep learning system (DLS) that detects diabetic macular edema (DME) from 2-dimensional color fundus photographs (CFP), for which the reference standard for retinal thickness and fluid presence is derive...

Automated segmentation of metal stent and bioresorbable vascular scaffold in intravascular optical coherence tomography images using deep learning architectures.

Physics in medicine and biology
Percutaneous coronary intervention (PCI) with stent placement is a treatment effective for coronary artery diseases. Intravascular optical coherence tomography (OCT) with high resolution is used clinically to visualize stent deployment and restenosis...

Optical coherence tomography for identification of malignant pulmonary nodules based on random forest machine learning algorithm.

PloS one
OBJECTIVE: To explore the feasibility of using random forest (RF) machine learning algorithm in assessing normal and malignant peripheral pulmonary nodules based on in vivo endobronchial optical coherence tomography (EB-OCT).

A deep learning model for identifying diabetic retinopathy using optical coherence tomography angiography.

Scientific reports
As the prevalence of diabetes increases, millions of people need to be screened for diabetic retinopathy (DR). Remarkable advances in technology have made it possible to use artificial intelligence to screen DR from retinal images with high accuracy ...

Open-source deep learning-based automatic segmentation of mouse Schlemm's canal in optical coherence tomography images.

Experimental eye research
The purpose of this study was to develop an automatic deep learning-based approach and corresponding free, open-source software to perform segmentation of the Schlemm's canal (SC) lumen in optical coherence tomography (OCT) scans of living mouse eyes...

Deep Learning Image Analysis of Optical Coherence Tomography Angiography Measured Vessel Density Improves Classification of Healthy and Glaucoma Eyes.

American journal of ophthalmology
PURPOSE: To compare convolutional neural network (CNN) analysis of en face vessel density images to gradient boosting classifier (GBC) analysis of instrument-provided, feature-based optical coherence tomography angiography (OCTA) vessel density measu...

Diagnostic armamentarium of infectious keratitis: A comprehensive review.

The ocular surface
Infectious keratitis (IK) represents the leading cause of corneal blindness worldwide, particularly in developing countries. A good outcome of IK is contingent upon timely and accurate diagnosis followed by appropriate interventions. Currently, IK is...