AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Tomography, Optical Coherence

Showing 41 to 50 of 761 articles

Clear Filters

ReIU: an efficient preliminary framework for Alzheimer patients based on multi-model data.

Frontiers in public health
The rising incidence of Alzheimer's disease (AD) poses significant challenges to traditional diagnostic methods, which primarily rely on neuropsychological assessments and brain MRIs. The advent of deep learning in medical diagnosis opens new possibi...

A comparative study of statistical, radiomics, and deep learning feature extraction techniques for medical image classification in optical and radiological modalities.

Computers in biology and medicine
Feature extraction in ML plays a crucial role in transforming raw data into a more meaningful and interpretable representation. In this study, we thoroughly examined a range of feature extraction techniques and assessed their impact on the binary cla...

OCT-based diagnosis of glaucoma and glaucoma stages using explainable machine learning.

Scientific reports
Glaucoma poses a growing health challenge projected to escalate in the coming decades. However, current automated diagnostic approaches on Glaucoma diagnosis solely rely on black-box deep learning models, lacking explainability and trustworthiness. T...

Artificial Intelligence for Optical Coherence Tomography in Glaucoma.

Translational vision science & technology
PURPOSE: The integration of artificial intelligence (AI), particularly deep learning (DL), with optical coherence tomography (OCT) offers significant opportunities in the diagnosis and management of glaucoma. This article explores the application of ...

Integrating Retinal Segmentation Metrics with Machine Learning for Predictions from Mouse SD-OCT Scans.

Current eye research
PURPOSE: This study aimed to initially test whether machine learning approaches could categorically predict two simple biological features, mouse age and mouse species, using the retinal segmentation metrics.

Explainable Deep Learning for Glaucomatous Visual Field Prediction: Artifact Correction Enhances Transformer Models.

Translational vision science & technology
PURPOSE: The purpose of this study was to develop a deep learning approach that restores artifact-laden optical coherence tomography (OCT) scans and predicts functional loss on the 24-2 Humphrey Visual Field (HVF) test.

Using a Deep Learning Model to Predict Postoperative Visual Outcomes of Idiopathic Epiretinal Membrane Surgery.

American journal of ophthalmology
PURPOSE: This study assessed the performance of various deep learning models in predicting the postoperative outcomes of idiopathic epiretinal membrane (ERM) surgery based on preoperative optical coherence tomography (OCT) images.

New Directions for Ophthalmic OCT - Handhelds, Surgery, and Robotics.

Translational vision science & technology
The introduction of optical coherence tomography (OCT) in the 1990s revolutionized diagnostic ophthalmic imaging. Initially, OCT's role was primarily in the adult ambulatory ophthalmic clinics. Subsequent advances in handheld form factors, integratio...

Age and gender-related changes in choroidal thickness: Insights from deep learning analysis of swept-source OCT images.

Photodiagnosis and photodynamic therapy
BACKGROUND: The choroid is a vital vascular layer of the eye, essential for maintaining ocular health. Understanding its structural variations, particularly choroidal thickness (CT), is crucial for the early detection of diseases, such as age-related...

Development of machine learning-based models for vault prediction in implantable collamer lens surgery according to implant orientation.

Journal of cataract and refractive surgery
PURPOSE: To develop a prediction model based on machine learning to calculate the postoperative vault and the ideal implantable collamer lens (ICL) size, considering for the first time the implantation orientation in a White population.