OBJECTIVE: To investigate the feasibility and accuracy of predicting locoregional recurrence (LR) in elderly patients with esophageal squamous cell cancer (ESCC) who underwent radical radiotherapy using a pairwise machine learning algorithm.
PURPOSE: The main objective of this study is to assess the possibility of using radiomics, deep learning, and transfer learning methods for the analysis of chest CT scans. An additional aim is to combine these techniques with bone turnover markers to...
Lesion segmentation is a fundamental step for the diagnosis of acute ischemic stroke (AIS). Non-contrast CT (NCCT) is still a mainstream imaging modality for AIS lesion measurement. However, AIS lesion segmentation on NCCT is challenging due to low c...
Deep learning models often need sufficient supervision (i.e., labelled data) in order to be trained effectively. By contrast, humans can swiftly learn to identify important anatomy in medical images like MRI and CT scans, with minimal guidance. This ...
IEEE transactions on neural networks and learning systems
Jun 3, 2024
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases, while its manual delineation is unduly burdensome. To alleviate this time-consuming and potentially subjective manual procedure, researchers have proposed ...
IEEE transactions on neural networks and learning systems
Jun 3, 2024
The rapid spread of the new pandemic, i.e., coronavirus disease 2019 (COVID-19), has severely threatened global health. Deep-learning-based computer-aided screening, e.g., COVID-19 infected area segmentation from computed tomography (CT) image, has a...
IEEE transactions on neural networks and learning systems
Jun 3, 2024
With the renaissance of deep learning, automatic diagnostic algorithms for computed tomography (CT) have achieved many successful applications. However, they heavily rely on lesion-level annotations, which are often scarce due to the high cost of col...
IEEE transactions on neural networks and learning systems
Jun 3, 2024
Noninvasively and accurately predicting the epidermal growth factor receptor (EGFR) mutation status is a clinically vital problem. Moreover, further identifying the most suspicious area related to the EGFR mutation status can guide the biopsy to avoi...
International journal of medical informatics
Jun 1, 2024
BACKGROUND: Predicting early recurrence (ER) of hepatocellular carcinoma (HCC) accurately can guide treatment decisions and further enhance survival. Computed tomography (CT) imaging, analyzed by deep learning (DL) models combining domain knowledge, ...
BACKGROUND AND PURPOSE: Intracranial hemorrhage (ICH) in leukemia patients progresses rapidly with high mortality. Limited data are available on imaging studies in this population. The study aims to develop prediction models for 7-day and short-term ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.