AIMC Topic: Tomography, X-Ray Computed

Clear Filters Showing 381 to 390 of 4963 articles

Incorporating indirect MRI information in a CT-based deep learning model for prostate auto-segmentation.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Computed tomography (CT) imaging poses challenges for delineation of soft tissue structures for prostate cancer external beam radiotherapy. Guidelines require the input of magnetic resonance imaging (MRI) information. We devel...

Automatic skull reconstruction by deep learnable symmetry enforcement.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Every year, thousands of people suffer from skull damage and require personalized implants to fill the cranial cavity. Unfortunately, the waiting time for reconstruction surgery can extend to several weeks or even months, es...

Automated segmentation by SCA-UNet can be directly used for radiomics diagnosis of thymic epithelial tumors.

European journal of radiology
BACKGROUND: Automatic segmentation of thymic lesions in preoperative computed tomography (CT) images is crucial for accurate diagnosis but remains time-consuming. Although UNet is widely used in medical imaging, its performance is limited by the inhe...

Radiomics and Deep Learning Prediction of Immunotherapy-Induced Pneumonitis From Computed Tomography.

JCO clinical cancer informatics
PURPOSE: Primary barriers to application of immune checkpoint inhibitor (ICI) therapy for cancer include severe side effects (such as potentially life threatening pneumonitis [PN]), which can cause the discontinuation of treatment. Predicting which p...

Diagnosis of Acute Appendicitis with Machine Learning-Based Computer Tomography: Diagnostic Reliability and Role in Clinical Management.

Journal of laparoendoscopic & advanced surgical techniques. Part A
Acute appendicitis (AA) is a common surgical emergency affecting 7-8% of the population. Timely diagnosis and treatment are crucial for preventing serious morbidity and mortality. Diagnosis typically involves physical examination, laboratory tests, ...

Automated identification of incidental hepatic steatosis on Emergency Department imaging using large language models.

Hepatology communications
BACKGROUND: Hepatic steatosis is a precursor to more severe liver disease, increasing morbidity and mortality risks. In the Emergency Department, routine abdominal imaging often reveals incidental hepatic steatosis that goes undiagnosed due to the ac...

Moving Beyond CT Body Composition Analysis: Using Style Transfer for Bringing CT-Based Fully-Automated Body Composition Analysis to T2-Weighted MRI Sequences.

Investigative radiology
OBJECTIVES: Deep learning for body composition analysis (BCA) is gaining traction in clinical research, offering rapid and automated ways to measure body features like muscle or fat volume. However, most current methods prioritize computed tomography...

A deep learning detection method for pancreatic cystic neoplasm based on Mamba architecture.

Journal of X-ray science and technology
OBJECTIVE: Early diagnosis of pancreatic cystic neoplasm (PCN) is crucial for patient survival. This study proposes M-YOLO, a novel model combining Mamba architecture and YOLO, to enhance the detection of pancreatic cystic tumors. The model addresses...

Accuracy of artificial intelligence in detecting tumor bone metastases: a systematic review and meta-analysis.

BMC cancer
BACKGROUND: Bone metastases (BM) represent a prevalent complication of tumors. Early and accurate diagnosis, however, is a significant hurdle for radiologists. Recently, artificial intelligence (AI) has emerged as a valuable tool to assist radiologis...