AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Tomography, X-Ray Computed

Showing 381 to 390 of 4535 articles

Clear Filters

Predicting Epidural Hematoma Expansion in Traumatic Brain Injury: A Machine Learning Approach.

The neuroradiology journal
IntroductionTraumatic brain injury (TBI) is a leading cause of disability and mortality worldwide, with epidural hematoma (EDH) being a severe consequence. This study focuses on identifying factors predicting EDH volume changes in TBI patients and de...

CT ventilation images produced by a 3D neural network show improvement over the Jacobian and HU DIR-based methods to predict quantized lung function.

Medical physics
BACKGROUND: Radiation-induced pneumonitis affects up to 33% of non-small cell lung cancer (NSCLC) patients, with fatal pneumonitis occurring in 2% of patients. Pneumonitis risk is related to the dose and volume of lung irradiated. Clinical radiothera...

Deep learning-enhanced zero echo time MRI for glenohumeral assessment in shoulder instability: a comparative study with CT.

Skeletal radiology
PURPOSE: To evaluate image quality and lesion conspicuity of zero echo time (ZTE) MRI reconstructed with deep learning (DL)-based algorithm versus conventional reconstruction and to assess DL ZTE performance against CT for bone loss measurements in s...

Radiomics-based automated machine learning for differentiating focal liver lesions on unenhanced computed tomography.

Abdominal radiology (New York)
BACKGROUND & AIMS: Enhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to differentiate between benign and malignant focal liver lesions on the basis...

Generalizability of lesion detection and segmentation when ScaleNAS is trained on a large multi-organ dataset and validated in the liver.

Medical physics
BACKGROUND: Tumor assessment through imaging is crucial for diagnosing and treating cancer. Lesions in the liver, a common site for metastatic disease, are particularly challenging to accurately detect and segment. This labor-intensive task is subjec...

Unsupervised Deep Learning for Synthetic CT Generation from CBCT Images for Proton and Carbon Ion Therapy for Paediatric Patients.

Sensors (Basel, Switzerland)
Image-guided treatment adaptation is a game changer in oncological particle therapy (PT), especially for younger patients. The purpose of this study is to present a cycle generative adversarial network (CycleGAN)-based method for synthetic computed t...

The development of an attention mechanism enhanced deep learning model and its application for body composition assessment with L3 CT images.

Scientific reports
Body composition assessment is very useful for evaluating a patient's status in the clinic, but recognizing, labeling, and calculating the body compositions would be burdensome. This study aims to develop a web-based service that could automate calcu...

Classifying age from medial clavicle using a 30-year threshold: An image analysis based approach.

PloS one
This study aimed to develop image-analysis-based classification models for distinguishing individuals younger and older than 30 using the medial clavicle. We extracted 2D images of the medial clavicle from multi-slice computed tomography (MSCT) scans...

Artificial intelligence in respiratory pandemics-ready for disease X? A scoping review.

European radiology
OBJECTIVES: This study aims to identify repeated previous shortcomings in medical imaging data collection, curation, and AI-based analysis during the early phase of respiratory pandemics. Based on the results, it seeks to highlight essential steps fo...